
(AN UGC AUTONOMOUS INSTITUTION)
Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade

Recognized Under Section 2(f) of UGC Act 1956, ISO 9001:2015 Certified
Vyasapuri, Bandlaguda, Post: Keshavgiri, Hyderabad- 500 005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

(R22)
OPERATING SYSTEM

Lecture Notes

B. Tech II YEAR – I SEM

Prepared by

SANGYAM SOUNDARYA
(Assistant Professor)

Dept.CSE(AIML)

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

OPERATING SYSTEMS
B.Tech. II Year I Sem. L T P C

3 0 0 3
Prerequisites:

1. A course on “Computer Programming and Data Structures”.
2. A course on “Computer Organization and Architecture”.

Course Objectives:

● Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization,
deadlocks, memory management, file and I/O subsystems and protection)

● Introduce the issues to be considered in the design and development of operating system
● Introduce basic Unix commands, system call interface for process management, interprocess

communication and I/O in Unix

Course Outcomes:

● Will be able to control access to a computer and the files that may be shared
● Demonstrate the knowledge of the components of computers and their respective roles in

computing.
● Ability to recognize and resolve user problems with standard operating environments.
● Gain practical knowledge of how programming languages, operating systems, and

architectures interact and how to use each effectively.

UNIT - I
Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared,
Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components,
Operating System services, System Calls
Process - Process concepts and scheduling, Operations on processes, Cooperating Processes,
Threads

UNIT - II
CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling.
System call interface for process management-fork, exit, wait, waitpid, exec
Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock
Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III
Process Management and Synchronization - The Critical Section Problem, Synchronization
Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors
Interprocess Communication Mechanisms: IPC between processes on a single computer system,
IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV
Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping,
Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page
Replacement, Page Replacement Algorithms.

UNIT - V
File System Interface and Operations -Access methods, Directory Structure, Protection, File System
Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close,
lseek, stat, ioctl system calls.

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

TEXT BOOKS:
1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition,

John Wiley.
2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005,
Pearson Education/PHI

2. Operating System A Design Approach- Crowley, TMH.
3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

2
S Soundarya(Assistant Professor)

UNIT I

INTRODUCTION

OPERATING SYSTEM

A computer system has many resources (hardware and software), which may be required to
complete a task. The commonly required resources are input/output devices, memory, file
storage space, CPU, etc. The operating system acts as a manager of the above resources and
allocates them to specific programs and users, whenever necessary to perform a particular
task. Therefore the operating system is the resource manager i.e. it can manage the resource of
a computer system internally. The resources are processor, memory, files, and I/O devices.

In simple terms, an operating system is an interface between the computer user and the
machine.

It is very important for you that every computer must have an operating system in order to run
other programs. The operating system mainly coordinates the use of the hardware among the
various system programs and application programs for various users.
An operating system acts similarly like government means an operating system performs no
useful function by itself; though it provides an environment within which other programs can
do useful work. Below we have an abstract view of the components of the computer system.

 The Computer Hardware contains a central processing unit(CPU), the
memory, and the input/output (I/O) devices and it provides the basic
computing resources for the system.

 The Application programs like spreadsheets, Web browsers, word processors, etc.
are usedto define the ways in which these resources are used to solve the computing
problems of the users. And the System program mainly consists of compilers,
loaders, editors, OS, etc.

3
S Soundarya(Assistant Professor)

 The Operating System is mainly used to control the hardware and coordinate its use
among the various application programs for the different users.

 Basically, Computer System mainly consists of hardware, software, and data. OS is
mainly designed in order to serve two basic purposes:

 The operating system mainly controls the allocation and use of the computing
System’s resourcesamong the various user and tasks.

 It mainly provides an interface between the computer hardware and the
programmer thatsimplifies and makes feasible for coding, creation of
application programs and debugging

Two Views of Operating System
User's View System
View

Operating System: User View
The user view of the computer refers to the interface being used. Such systems are designed
for one user to monopolize its resources, to maximize the work that the user is
performing. In these cases,the operating system is designed mostly for ease of use, with
some attention paid to performance, and none paid to resource utilization.

Operating System: System View
The operating system can be viewed as a resource allocator also. A computer system consists
of many resources like - hardware and software - that must be managed efficiently. The
operating system acts as the manager of the resources, decides between conflicting requests,
controls the execution of programs, etc.

Types of Operating System
Given below are different types of Operating System:

 Simple Batch System
 Multi programmed
 Time-Shared
 Personal Computer
 Parallel
 Distributed Systems
 Real Time Systems

STRUCTURES

SIMPLE BATCH

In a Batch Operating System, the similar jobs are grouped together into batches with the help
of some operator and these batches are executed one by one. For example, let us assume that
we have 10 programs that need to be executed. Some programs are written in C++, some in C
and rest in Java. Now, every time when we run these programs individually then we will have
to load the compiler of that particular language and then execute the code. But what if
we make a batch of these 10

4
S Soundarya(Assistant Professor)

programs. The benefit with this approach is that, for the C++ batch, you need to load the
compiler only once. Similarly, for Java and C, the compiler needs to be loaded only once
andthe whole batch gets executed.

The following batch processing actions are performed by a computer system running this
operating system:

 A job is a single unit made up of a pre-programmed set of data, commands, and

programs.
 The orders are processed in the order in which these are received, meaning first come,

first served.
 These jobs are saved in memory and run without the need for any manual input.
 The OS releases memory after a job is completed successfully.

The following image describes the working of a Batch Operating System.

The OS keeps track of the number of jobs and executes them one by one. Jobs are processed in
the order in which they are received. A batch is defined for each work set. When a job is
completed, the memory associated with it is released, and the work’s output is sent to an
output spool for printing or processing later. In a batch operating system, user engagement is
limited. When the system takes over the task from the user, the person is free to do other
things. You can also make use of the batch processing system to make changes to data in any
transactions or records.

Examples

 Payroll System
 Bank Invoice System
 Transactions Process
 Daily Report
 Research Segment
 Billing System

Advantages:

 The overall time taken by the system to execute all the programmes will be
reduced.

 The Batch Operating System can be shared between multiple users.

5
S Soundarya(Assistant Professor)

Disadvantages:

 Manual interventions are required between two batches.
 The CPU utilization is low because the time taken in loading and unloading of

batches is veryhigh as compared to execution time.

MULTI-PROGRAMMING

On a single processor computer, a multiprogramming OS can run many programs. In a
multiprogramming OS, if one program must wait for an input/output transfer, the other
programmes are ready to use the CPU. As a result, different jobs may have to split CPU time.
However, their jobs are not scheduled to be completed at the same time.
Multiprogramming’s main purpose is to manage all of the system’s resources. The file system,
transient area, command processor, and I/O control system are the main components of a
multiprogramming system.

Working of multi-programming

In the multiprogramming system, multiple users can complete their tasks at the same time, and

they can be saved in the main memory. While a programme is performing I/O operations, the

CPU may distribute time to other applications while in idle mode.

While one application waits for an I/O transfer, another is always ready to use the processor,

and multiple programmes may share CPU time. Although not all tasks are executed at the

same time, there may be multiple jobs operating on the processor at the same time, with parts

of other processes first being executed, followed by another

6
S Soundarya(Assistant Professor)

Time-sharing is a logical extension of multiprogramming. The CPU executes multiple
jobs by switching, among them, but the switches occur so frequently that the users can
interact with each program while it is running. An interactive computer provides direct
communication between the user and the system. The user gives instructions to the OS
or a program directly, using hardware, and waits for results.

A time-shared operating system uses CPU scheduling and multiprogramming to
provide each user with a small portion of a time-shared computer. Each user has at
least one separate program in memory. When a process executes, it executes for only a
short time before it either finishes or needs to perform input/output. In time-sharing
operating systems several jobs must be kept simultaneously in memory, so the system
must have memory management and protection.

Working of timesharing operating system

segment, and so on. As a result, a multiprogramming system’s overall purpose is to keep the

CPU busy unless and until some tasks in the job pool become available. As a result, a single

processor computer may run multiple programmes, and the CPU is never idle

Examples
 Apps like office, chrome, etc.
 Microcomputers like MP/M, XENIX, and ESQview.
 Windows O/S
 UNIX O/S

Advantages

 High and efficient CPU utilization.
 User feels that many programs are allotted CPU almost simultaneously.

Disadvantages
 CPU scheduling is required.
 To accommodate many jobs in memory, memory management is required

TIME-SHARING OPERATING SYSTEM

In a Multi-tasking Operating System, more than one processes are being executed at a
particular time with the help of the time-sharing concept. So, in the time-sharing environment,
we decide a time that is called time quantum and when the process starts its execution then the
execution continues for only that amount of time and after that, other processes will be given
chance for that amount of time only. In the next cycle, the first process will again come for
its execution and itwill be executed for that time quantum only and again next process will
come. This process will continue.

7
S Soundarya(Assistant Professor)

Windows 2000 server
Windows NT server
Unix
Linux

The following image describes the working of a Time-Sharing Operating System.

Advantages:
Since equal time quantum is given to each process, so each process gets equal opportunity
toexecute.
The CPU will be busy in most of the cases and this is good to have case.
Disadvantages:
1. Process having higher priority will not get the chance to be executed first
because the equalopportunity is given to each process.

 Examples

 PERSONAL COMPUTER OPERATING SYSTEM

Personal computer operating system provides a good interface to a single user.

 Personal computer operating systems are widely used for word processing,
spreadsheets and Internetaccess.

 Personal computer operating system is made only for personal. You can say that your
laptops, computer systems, tablets etc. are your personal computers and the operating
system such as windows 7; windows 10, android, etc. are your personal computer
operating system.

 you can use your personal computer operating system for your personal purposes, for
example, to chatting with your friends using some social media sites, reading some
articles from internet, making some projects through Microsoft PowerPoint or any
other, designing your website, programming something, watching some videos and
movies, listening to some songs and many more.

8
S Soundarya(Assistant Professor)

PARALLEL PROCESSING (MULTIPROCESSOR OPERATING SYSTEM)

Multiprocessor operating system utilizes multiple processors, which are connected
with physical memory, computer buses, clocks, and peripheral devices (touchpad,
joystick, etc). The main objective of using a multiprocessor OS is to consume high
computing power and increase the execution speed of the system.

Following are four major components, used in the Multiprocessor Operating System:

1. CPU – capable to access memories as well as controlling the entire I/O tasks.
2. Input Output Processor – I/P processor can access direct memories, and

every I/O processors have to be responsible for controlling all input and output
tasks.

3. Input/output Devices – These devices are used for inserting the input
commands, and producing output after processing.

4. Memory Unit – Multiprocessor system uses the two types of memory modules
- shared memory and distributed shared memory.

A Personal Operating System is incredibly useful. By habituating high-value practices, you
make decisions about how you want to respond to life in advance. This makes life simpler. For
instance, having a morning routine means not burning precious creative energy in the first few
hours of your day by trying to decide how to organize your time. There are countless micro-
decisions that you make every day that can be removed by adopting a broader philosophy for
how you want to live your life.

9
S Soundarya(Assistant Professor)

A distributed operating system allows the distribution of entire systems on the couples
of center processors, and it serves on multiple real-time products as well as multiple
users. All processors are connected by valid communication mediums such as high-
speed buses and telephone lines, and in which every processor contains its local
memory along with other local processors.

The Distributed operating systems are also known as loosely coupled systems. They
involve multiple computers, nodes, and sites. These components are linked to each
other with LAN/WAN lines. A distributed OS is capable of sharing its computational
capacity and I/O files while allowing virtual machine abstraction to users.

Advantages
 It saves time and money as many resources working together will reduce the

time and cutpotential costs.
 It can be impractical to solve larger problems on Serial Computing.
 It can take advantage of non-local resources when the local resources are finite.
 Serial Computing ‘wastes’ the potential computing power, thus Parallel

Computing makesbetter work of the hardware.
Disadvantages

 It addresses such as communication and synchronization between multiple sub- tasks
andprocesses which is difficult to achieve.

 The algorithms must be managed in such a way that they can be handled in a
parallelmechanism.

 The algorithms or programs must have low coupling and high cohesion. But
it’s difficult tocreate such programs.

 More technically skilled and expert programmers can code a parallelism- based
program well.

DISTRIBUTED OPERATING SYSTEM

10
S Soundarya(Assistant Professor)

Solaris
OSF/1
Micros
DYNIX
Locus
Mach

Fig: Network in Distributed Operating system

Examples

11
S Soundarya(Assistant Professor)

A distributed operating system may share all resources from one site to
another, increasing data availability across the entire system.
It reduces the probability of data corruption because all data is replicated
across all sites.
The entire system operates independently of one another, and as a result, if one
site crashes, the entire system does not halt.
A distributed operating system is an open system since it may be accessed from
both local and remote locations.
It helps in the reduction of data processing time.
Most distributed systems are made up of several nodes that interact to make
them fault-tolerant. If a single machine fails, the system remains operational.

The system must decide which jobs must be executed when they must be
executed, and where they must be executed. A scheduler has limitations, which
can lead to underutilized hardware and unpredictable runtimes.
It is hard to implement adequate security in a distributed operating system
since the nodes and connections must be secured.
The database connected to a DOS is relatively complicated and hard to manage
in contrast to a single-user system.
The underlying software is extremely complex and is not understood very well
compared to other systems.
The more widely distributed a system is, the more communication latency can
be expected. As a result, teams and developers must choose between
availability, consistency, and latency.
Gathering, processing, presenting, and monitoring hardware use metrics for big
clusters can be a real issue.

Solaris
OSF/1
Micros
DYNIX
Locus
Mach

 Disadvantages

 Examples

REAL TIME OPERATING SYSTEM

It is developed for real-time applications where data should be processed in a fixed, small
duration of time. It is used in an environment where multiple processes are supposed to be
accepted and processed in a short time. RTOS requires quick input and immediate response,

Advantages

12
S Soundarya(Assistant Professor)

e.g., in a petroleum refinery, if the temperate gets too high and

13
S Soundarya(Assistant Professor)

crosses the threshold value, there should be an immediateresponse to this situation to avoid the
explosion. Similarly, this system is used to control scientific instruments, missile launch
systems, traffic lights control systems, air traffic control systems, etc.

This system is further divided into two types based on the time constraints:

Hard Real-Time Systems:
These are used for the applications where timing is critical or response time is a major factor;
even a delay of a fraction of the second can result in a disaster. For example, airbags and
automatic parachutes that open instantly in case of an accident. Besides this, these systems
lack virtual memory.

Soft Real-Time Systems:
These are used for application where timing or response time is less critical. Here, the failure
to meetthe deadline may result in a degraded performance instead of a disaster. For example,
video surveillance (cctv), video player, virtual reality, etc. Here, the deadlines are not critical
for every taskevery time.

Advantages

 The output is more and quick owing to the maximum utilization of devices and system
 Task shifting is very quick, e.g., 3 microseconds, due to which it seems that

several tasks areexecuted simultaneously
 Gives more importance to the currently running applications than the queued

application
 It can be used in embedded systems like in transport and others.
 It is free of errors.
 Memory is allocated appropriately.

Disadvantages
 A fewer number of tasks can run simultaneously to avoid errors.
 It is not easy for a designer to write complex and difficult algorithms or

proficient programsrequired to get the desired output.
 Specific drivers and interrupt signals are required to respond to interrupts quickly.
 It may be very expensive due to the involvement of the resources required to work.

SYSTEM COMPONENTS

An operating system is a large and complex system that can only be created by partitioning
into small pieces. These pieces should be a well-defined portion of the system, which
carefully defined inputs, outputs, and functions.

14
S Soundarya(Assistant Professor)

Although Mac, Unix, Linux, Windows, and other OS do not have the same structure, most of
the operating systems share similar OS system components like File, Process, Memory, I/O
device management.

Let’s see each of these components in detail.

File Management

A file is a set of related information which is should define by its creator. It commonly
represents programs; both source and object forms, and data. Data files can be numeric,
alphabetic, or alphanumeric.

Function of file management in OS:

The operating system has the following important given activities in connections with file
management:

 File and directory creation and deletion.
 For manipulating files and directories.
 Mapping files onto secondary storage.
 Backup files on stable storage media

Process Management

 The process management component is a procedure for managing the many processes
that are running simultaneously on the operating system. Every software application
program has one or more processes associated with them when they are running.

15
S Soundarya(Assistant Professor)

 For example, when you use a browser like Google Chrome, there is a process running
for that browser program. The OS also has many processes running, which performing
various functions.

 All these processes should be managed by process management, which keeps
processes for running efficiently. It also uses memory allocated to them and shutting
them down when needed.

 The execution of a process must be sequential so, at least one instruction should be
executed on behalf of the process.

Functions of process management in OS:

The following are functions of process management.

 Process creation and deletion.
 Suspension and resumption.
 Synchronization process
 Communication process

I/O Device Management
One of the important use of an operating system that helps you to hide the variations of
specific hardware devices from the user.

Functions of I/O management in OS:

 It offers buffer caching system
 It provides general device driver code
 It provides drivers for particular hardware devices.
 I/O helps you to know the individualities of a specific device.

Network management

Network management is the process of administering and managing computer
networks. It includes performance management, fault analysis, provisioning of
networks, and maintaining the quality of service.

A distributed system is a collection of computers/processors that never share their own
memory or a clock. In this type of system, all the processors have their local Memory, and the
processors communicate with each other using different communication lines, like fiber optics
or telephone lines.

The computers in the network are connected through a communication network, which can be
configured in a number of different ways. With the help of network management, the network
can be fully or partially connected, which helps users to design routing and connection
strategies that overcome connection and security issues.

16
S Soundarya(Assistant Professor)

Functions of Network management:

 Distributed systems help you to various computing resources in size and
function. They may involve microprocessors, minicomputers, and many
general-purpose computer systems.

 A distributed system also offers the user access to the various resources the
network shares.

 It helps to access shared resources that help computation to speed-up or offers data
availability and reliability.

Main Memory management

Main Memory is a large array of storage or bytes, which has an address. The memory
management process is conducted by using a sequence of reads or writes of specific memory
addresses.

In order to execute a program , it should be mapped to absolute addresses and loaded inside
the Memory. The selection of a memory management method depends on several factors.

However, it is mainly based on the hardware design of the system. Each algorithm requires
corresponding hardware support. Main Memory offers fast storage that can be accessed
directly by the CPU. It is costly and hence has a lower storage capacity.
However, for a program to be executed, it must be in the main Memory.

Functions of Memory management in OS:

An Operating System performs the following functions for Memory Management:

 It helps you to keep track of primary memory.
 Determine what part of it are in use by whom, what part is not in use.
 In a multiprogramming system, the OS takes a decision about which process will

get Memory and how much.
 Allocates the memory when a process requests
 It also de-allocates the Memory when a process no longer requires or has been

terminated.

Secondary-Storage Management

The most important task of a computer system is to execute programs. These programs, along
with the data, help you to access, which is in the main memory during execution.

This Memory of the computer is very small to store all data and programs permanently. The
computer system offers secondary storage to back up the main Memory. Today modern
computers use hard drives/SSD as the primary storage of both

17
S Soundarya(Assistant Professor)

programs and data. However, the secondary storage management also works with storage
devices, like a USB flash drive, and CD/DVD drives.

Programs like assemblers, compilers, stored on the disk until it is loaded into memory, and
then use the disk as a source and destination for processing.

Functions of Secondary storage management in OS:

Here, are major functions of secondary storage management in OS:

 Storage allocation
 Free space management
 Disk scheduling

Security Management

The various processes in an operating system need to be secured from each other’s activities.
For that purpose, various mechanisms can be used to ensure that those processes which want
to operate files, memory CPU, and other hardware resources should have proper authorization
from the operating system.

For example, Memory addressing hardware helps you to confirm that a process can be
executed within its own address space. The time ensures that no process has control of the
CPU without renouncing it.

OPERATING SYSTEM SERVICES

An operating system executes programs and makes the process of solving them easier. It also
makes the computer system easier to use and helps the user use the computer hardware
efficiently. Apart from these, it also provides an array of services both to the users and the
programs.

Services of Operating System

The OS is the resource manager of a system. Thus, there are multiple services it provides in
order to have an efficient system that can utilize these resources to the fullest. Following are
the services provided by operating systems:

18
S Soundarya(Assistant Professor)

1. User Interface

 An interface is required to communicate with the user. Then it can either be a
Command Line Interface or a Graphical User Interface.

 There is also a third kind that is Batch Based Interface which is usually overlooked. It
uses commands to manage the commands entered into files and then these files get
executed.

 As for the first two, Command Line Interface commonly uses text commands input by
the users to interact with the system. These commands can also be given using a
terminal emulator, or remote shell client.

 A Graphical User Interface (GUI) allows users to interact with the computer system
or any other computer-controlled device.

 A GUI usually consists of all the graphical icons displayed on a computer screen,
visual indicators like widgets, texts, labels, and text navigation. Thus, a user can
directly perform actions with a click of the mouse or keyboard.

2. Program Execution

The OS loads a program into memory and then executes that program. It also makes sure that
once started that program can end its execution, either normally or forcefully. The major steps
during program management are:

 Loading a program into memory.
 Executing the program.
 Making sure the program completes its execution.
 Providing a mechanism for:

1. process synchronization.
2. Process communication.
3. Deadlock handling.

19
S Soundarya(Assistant Professor)

3. File System Manipulation

A program is read and then written in the form of directories and files. These files can be
stored on the storage disk for the long term. The OS allows the users to create and delete files,
duplicate these files, and search files and their information or properties.

It also does permission management for these files i.e., allowing or denying access to these
files or directories based on the file ownership.

4. I/O Operations

I/O operations are required during the execution of a program. To maintain efficiency and
protection of the program, users cannot directly govern the I/O devices instead the OS allows
to read or write operations with any file using the I/O devices and also allows access to any
required I/O device when required.

5. Communication systems

Processes need to swap information among themselves. These processes can be from the same
computer system or different computer systems as long as they are connected through
communication lines in a network.

This can be done with the help of OS support using shared memory or message passing. The
OS also manages routing, connection strategies, and the problem of contention and security.

6. Resource Allocation

When multiple users or multiple jobs run on a system concurrently, the resources need to be
allocated equally to all of them.

CPU scheduling is used to allocate resources fairly and for the better utilization of the CPU.
These resources may include CPU cycles, main memory storage, file storage, and I/O devices.

7. Error Detection

Errors may occur in any of the resources like CPU, I/O devices, or memory hardware. The OS
keeps a lookout for such errors, corrects errors when they occur, and makes sure that the
system works uninterruptedly.

8. Accounting

This keeps a check of which resource is being used by a user and for how long it is being
used. This is usually done for statistical purposes.

20
S Soundarya(Assistant Professor)

9. Protection and Security

This is to ensure the safety of the system. Thus, user authentication is required to access a
system. It is also necessary to protect a process from another when multiple processes are
running on a system at the same time.

The OS controls the access to the resources, protects the I/O devices from invalid access, and
provides authentication through passwords.

10. Command Interpretation

The OS understands and interprets commands that are input by the user and displays the input
accordingly. Multiple command interpreters can be supported by an OS and they do not
necessarily need to run in kernel mode.

If the interpreter is separate from the kernel then you can modify the interpreter and prevent
any unauthorized access into the system.

11. Resource Manager

The OS manages resources such as processor, memory, I/O devices etc efficiently. It allocates
resources to processes and administers running programs to ensure user satisfaction.

It also decides the time at which a program should run, the amount of memory allocated for
execution, where to save a file, and much more.

Apart from these basics, there are some more services the OS provides that are a part of
resource management. These are:

a. Process Management
when multiple processes run simultaneously on a system, the OS help manage them in order to
enhance system performance. Apart from this, the OS also manages printer spooling, virtual
memory, swapping, etc. and CPU scheduling is used to allocate resource

Major activities regarding process management are:
1. Creates and deletes processes.
2. Suspends and re-activates processes.
3. A mechanism for

 process synchronization
 process communication
 deadlock handling

b. Main-Memory Management
This deals with the primary, secondary, and virtual memory and increases the amount of
memory available for each process. In order to perform program execution, it is necessary to
load the program into the main memory.

21
S Soundarya(Assistant Professor)

The OS ensures that there is enough memory for a process to execute and different locations
of memory are being used properly for effective execution of processes.

During execution, the memory manager tracks available memory locations, where processes
can be allocated or unallocated.

c. Secondary-Storage Management
Primary and cache storage are volatile memories thus, the data is lost once power is turned
off.
Moreover, main memory cannot accommodate all data and programs so secondary storage is
needed as a backup like tape drives, disk drives, and other media. This provides easy access
to the files and folders in the secondary storage using disk scheduling algorithms.

OS manages free space on the secondary storage devices, allocates storage space to new files,
schedules memory access requests, and creates and deletes files.

d. Network Management
The OS works as a network resource manager when multiple systems form a network or in a
distributed system. The processors communicate through network lines called networks.
Today’s networks are usually based on client-server configuration where a client is the
program running on the local machine requesting a service and a server is the program
running on the remote machine providing a service.

SYSTEM CALLS

A system call is a mechanism that provides the interface between a process and the operating
system. It is a programmatic method in which a computer program requests a service from
the kernel of the OS.

System call offers the services of the operating system to the user programs via API
(Application Programming Interface). System calls are the only entry points for the kernel
system.

22
S Soundarya(Assistant Professor)

Example of System Call

For example if we need to write a program code to read data from one file, copy that data into
another file. The first information that the program requires is the name of the two files, the
input and out0put files.

In an interactive system, this type of program execution requires some system calls by OS.

 First call is to write a prompting message on the screen
 Second, to read from the keyboard, the characters which define the two files.

How System Call Works?

Here are the steps for System Call in OS:

As you can see in the above-given System Call example diagram.

Step 1) The processes executed in the user mode till the time a system call interrupts it.
Step 2) After that, the system call is executed in the kernel-mode on a priority basis.
Step 3) Once system call execution is over, control returns to the user mode.,
Step 4) The execution of user processes resumed in Kernel mode.

Why do you need System Calls in OS?

Following are situations which need system calls in OS:

 Reading and writing from files demand system calls.
 If a file system wants to create or delete files, system calls are required.
 System calls are used for the creation and management of new processes.

23
S Soundarya(Assistant Professor)

 Network connections need system calls for sending and receiving packets.
 Access to hardware devices like scanner, printer, need a system call.

Types of system calls

Process Control

This system calls perform the task of process creation, process termination, etc.

Functions:

 End and Abort
 Load and Execute
 Create Process and Terminate Process
 Wait and Signal Event
 Allocate and free memory

File Management

File management system calls handle file manipulation jobs like creating a file, reading, and
writing, etc.

Functions:

 Create a file
 Delete file
 Open and close file
 Read, write, and reposition
 Get and set file attributes

Device Management

Device management does the job of device manipulation like reading from device buffers,
writing into device buffers, etc.

24
S Soundarya(Assistant Professor)

Functions:

 Request and release device
 Logically attach/ detach devices
 Get and Set device attributes

Information Maintenance

It handles information and its transfer between the OS and the user program.

Functions:

 Get or set time and date
 Get process and device attributes

Communication:

These types of system calls are specially used for interprocess communications.

Functions:

 Create, delete communications connections
 Send, receive message
 Help OS to transfer status information
 Attach or detach remote devices

 Example of System Calls in Windows and Unix

Types of System Calls Windows Linux

Process Control

CreateProcess() fork()

ExitProcess() exit()

WaitForSingleObject() wait()

File Management

CreateFile() open()
ReadFile() read()
WriteFile() write()

CloseHandle() close()

Device Management

SetConsoleMode() ioctl()

ReadConsole() read()

WriteConsole() write()

Information Maintenance

GetCurrentProcessID() getpid()

SetTimer() alarm()

Sleep() sleep()

Communication

CreatePipe() pipe()

CreateFileMapping() shmget()
MapViewOfFile() mmap()

25
S Soundarya(Assistant Professor)

1. The floating-point parameters can’t be passed as a parameter in the system call.
2. Only a limited number of arguments can be passed in the system call.
3. If there are more arguments, then they should be stored in the block of memory

and the address of that memory block is stored in the register.
4. Parameters can be pushed and popped from the stack only by the operating

system.

 Rules for Passing Parameters in System Call

Important System Calls Used in OS

wait()

In some systems, a process needs to wait for another process to complete its execution. This
type of situation occurs when a parent process creates a child process, and the execution of the
parent process remains suspended until its child process executes.

The suspension of the parent process automatically occurs with a wait() system call. When the
child process ends execution, the control moves back to the parent process.

fork()

Processes use this system call to create processes that are a copy of themselves. With the help
of this system Call parent process creates a child process, and the execution of the parent
process will be suspended till the child process executes.

exec()

This system call runs when an executable file in the context of an already running process that
replaces the older executable file. However, the original process identifier remains as a new
process is not built, but stack, data, head, data, etc. are replaced by the new process.

kill():

The kill() system call is used by OS to send a termination signal to a process that urges the
process to exit. However, a kill system call does not necessarily mean killing the process and
can have various meanings.

exit():

The exit() system call is used to terminate program execution. Specially in the multi- threaded
environment, this call defines that the thread execution is complete. The OS reclaims resources
that were used by the process after the use of exit() system call.

26
S Soundarya(Assistant Professor)

System call is the interface through which the process communicates with the
system call.
Computer system operates in two modes: User Mode and Kernel Mode
Process executes in user mode, and when a system call is made, the mode is
switched to kernel mode. Once the system call execution is completed, the
control is passed back to the process in user mode.
System calls in OS are made by sending a trap signal to the kernel, which reads
the system call code from the register and executes the system call.
Major type of system calls are Process Control, File Management, Device
Management, Information maintenance and Communication.
Rules for parameter passing while making a system call is it should not be a
floating number, a limited number of arguments should be passed and if
arguments are more, they should be stored in memory block and address of that
memory block should be passed, and the push, pop operations from the stack
will be made only by the operating system.
wait(), fork(), exec(), kill() and exit() are few important system calls of our
computer system.

Short note on system call

(AN UGC AUTONOMOUS INSTITUTION)
Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade

Recognized Under Section 2(f) of UGC Act 1956, ISO 9001:2015 Certified
Vyasapuri, Bandlaguda, Post: Keshavgiri, Hyderabad- 500 005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

(R22)
OPERATING SYSTEM

Lecture Notes

B. Tech II YEAR – I SEM

Prepared by

SANGYAM SOUNDARYA
(Assistant Professor)

Dept.CSE(AIML)

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

OPERATING SYSTEMS
B.Tech. II Year I Sem. L T P C

3 0 0 3
Prerequisites:

1. A course on “Computer Programming and Data Structures”.
2. A course on “Computer Organization and Architecture”.

Course Objectives:

● Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization,
deadlocks, memory management, file and I/O subsystems and protection)

● Introduce the issues to be considered in the design and development of operating system
● Introduce basic Unix commands, system call interface for process management, interprocess

communication and I/O in Unix

Course Outcomes:

● Will be able to control access to a computer and the files that may be shared
● Demonstrate the knowledge of the components of computers and their respective roles in

computing.
● Ability to recognize and resolve user problems with standard operating environments.
● Gain practical knowledge of how programming languages, operating systems, and

architectures interact and how to use each effectively.

UNIT - I
Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared,
Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components,
Operating System services, System Calls
Process - Process concepts and scheduling, Operations on processes, Cooperating Processes,
Threads

UNIT - II
CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling.
System call interface for process management-fork, exit, wait, waitpid, exec
Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock
Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III
Process Management and Synchronization - The Critical Section Problem, Synchronization
Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors
Interprocess Communication Mechanisms: IPC between processes on a single computer system,
IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV
Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping,
Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page
Replacement, Page Replacement Algorithms.

UNIT - V
File System Interface and Operations -Access methods, Directory Structure, Protection, File System
Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close,
lseek, stat, ioctl system calls.

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

TEXT BOOKS:
1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition,

John Wiley.
2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005,
Pearson Education/PHI

2. Operating System A Design Approach- Crowley, TMH.
3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

(AN UGC AUTONOMOUS INSTITUTION)
Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade

Recognized Under Section 2(f) of UGC Act 1956, ISO 9001:2015 Certified
Vyasapuri, Bandlaguda, Post: Keshavgiri, Hyderabad- 500 005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

(R22)
OPERATING SYSTEM

Lecture Notes

B. Tech II YEAR – I SEM

Prepared by

SANGYAM SOUNDARYA
(Assistant Professor)

Dept.CSE(AIML)

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

OPERATING SYSTEMS
B.Tech. II Year I Sem. L T P C

3 0 0 3
Prerequisites:

1. A course on “Computer Programming and Data Structures”.
2. A course on “Computer Organization and Architecture”.

Course Objectives:

● Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization,
deadlocks, memory management, file and I/O subsystems and protection)

● Introduce the issues to be considered in the design and development of operating system
● Introduce basic Unix commands, system call interface for process management, interprocess

communication and I/O in Unix

Course Outcomes:

● Will be able to control access to a computer and the files that may be shared
● Demonstrate the knowledge of the components of computers and their respective roles in

computing.
● Ability to recognize and resolve user problems with standard operating environments.
● Gain practical knowledge of how programming languages, operating systems, and

architectures interact and how to use each effectively.

UNIT - I
Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared,
Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components,
Operating System services, System Calls
Process - Process concepts and scheduling, Operations on processes, Cooperating Processes,
Threads

UNIT - II
CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling.
System call interface for process management-fork, exit, wait, waitpid, exec
Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock
Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III
Process Management and Synchronization - The Critical Section Problem, Synchronization
Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors
Interprocess Communication Mechanisms: IPC between processes on a single computer system,
IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV
Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping,
Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page
Replacement, Page Replacement Algorithms.

UNIT - V
File System Interface and Operations -Access methods, Directory Structure, Protection, File System
Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close,
lseek, stat, ioctl system calls.

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

TEXT BOOKS:
1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition,

John Wiley.
2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005,
Pearson Education/PHI

2. Operating System A Design Approach- Crowley, TMH.
3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

SANGYAM SOUNDARYA(Assistant Professor)

UNIT III

INTER PROCESS COMMUNICATION (IPC) MECHANISMS

Inter process communication (IPC) is a process that allows different processes of a computer

system to share information. IPC lets different programs run in parallel, share data, and

communicate with each other. It’s important for two reasons: First, it speeds up the execution of

tasks, and secondly, it ensures that the tasks run correctly and in the order that they were

executed.

interprocess communication is necessary

IPC lets different programs run in parallel, share data, and communicate with each other.

 It speeds up the execution of tasks.

 It ensures that the tasks run correctly and in the order that they were executed.

 IPC is essential for the efficient operation of an operating system.

 Operating systems use IPC to exchange data with tools and components that the system

uses to interact with the user, such as the keyboard, the mouse, and the graphical user

interface (GUI).

 IPC also lets the system run multiple programs at the same time. For example, the system

might use IPC to provide information to the windowing system about the status of a

window on the screen.

How does IPC work in Computer Systems?

 IPC occurs when an application sends a message to an operating system process. The

operating system sends the message to a designated IPC mechanism, which handles the

message and sends a response back to the application. IPC mechanisms can be found in

the kernel or the user space of an operating system.

 IPC is an essential process in the operation of computer systems. It enables different

programs to run in parallel, share data, and communicate with each other. IPC is

important for the efficient operation of an operating system and ensures that the tasks run

correctly and in the order that they were executed.

A system can have two types of processes

 Independent Process

1. There may be several processes running in the system at the same time which can be

either cooperating processes or independent processes.

2. An independent process cannot be impacted or affected by other processes.

3. Cooperating Process in OS is a process that can affect or get affected by any other

process under execution.

SANGYAM SOUNDARYA(Assistant Professor)

 Cooperating Process

Cooperating processes affect each other and may share data and information among themselves.

Interprocess Communication or IPC provides a mechanism to exchange data and information

across multiple processes, which might be on single or multiple computers connected by a

network.

IPC helps achieve these things:

 Computational Speedup

 Modularity

 Information and data sharing

 Privilege separation

 Processes can communicate with each other and synchronize their action.

Different Ways to Implement Inter Process Communication (IPC)

SANGYAM SOUNDARYA(Assistant Professor)

 Pipes

 It is a half-duplex method (or one-way communication) used for IPC between two related

processes.

 It is like a scenario like filling the water with a tap into a bucket. The filling process is

writing into the pipe and the reading process is retrieved from the pipe.

Shared Memory

shared memory is a memory shared between all processes by two or more processes

established using shared memory. This type of memory should protect each other by

synchronizing access between all processes. Both processes, like A and B, can set up a

shared memory segment and exchange data through this shared memory area. Shared

memory is important for these reasons-

It is a way of passing data between processes.

Shared memory is much faster and more reliable than these methods.

Shared memory allows two or more processes to share the same copy of the data.

Suppose process A wants to communicate with process B and needs to attach its address

space to this shared memory segment. Process A will write a message to the shared

memory, and Process B will read that message from the shared memory. So, processes

are responsible for ensuring synchronization so that both processes do not write to the

same location at the same time.

SANGYAM SOUNDARYA(Assistant Professor)

Message Passing

 In IPC, this is used by a process for communication and synchronization.

 Processes can communicate without any shared variables, therefore it can be used in a

distributed environment on a network.

 It is slower than the shared memory technique.

 It has two actions sending (fixed size message) and receiving messages.

Message Queues

We have a linked list to store messages in a kernel of OS and a message queue is

identified using "message queue identifier".

Direct Communication

 In this, processes that wanna communicate must name the sender or receiver.

 A pair of communicating processes must have one link between them.

 A link (generally bi-directional) establishes between every pair of communicating

processes.

SANGYAM SOUNDARYA(Assistant Professor)

Indirect Communication

 Pairs of communicating processes have shared mailboxes.

 Link (uni-directional or bi-directional) is established between pairs of processes.

 Sender process puts the message in the port or mailbox of a receiver process and the

receiver process takes out (or deletes) the data from the mailbox.

FIFO

 Used to communicate between two processes that are not related.

 Full-duplex method - Process P1 is able to communicate with Process P2, and vice versa.

Advantages of Inter-Process Communication (IPC)

Inter-Process Communication (IPC) allows different processes running on the same or different

systems to communicate with each other. There are several advantages of using IPC, which are:

SANGYAM SOUNDARYA(Assistant Professor)

Data Sharing: IPC allows processes to share data with each other. This can be useful in

situations where one process needs to access data that is held by another process.

Resource Sharing: IPC allows processes to share resources such as memory, files, and devices.

This can help reduce the amount of memory or disk space that is required by a system.

Synchronization: IPC allows processes to synchronize their activities. For example, one process

may need to wait for another process to complete its task before it can continue.

Modularity: IPC allows processes to be designed in a modular way, with each process

performing a specific task. This can make it easier to develop and maintain complex systems.

Scalability: IPC allows processes to be distributed across multiple systems, which can help

improve performance and scalability.

Disadvantages of Inter-Process Communication (IPC)

Complexity: IPC can add complexity to the design and implementation of software systems, as

it requires careful coordination and synchronization between processes. This can lead to

increased development time and maintenance costs.

Overhead: IPC can introduce additional overhead, such as the need to serialize and deserialize

data, and the need to synchronize access to shared resources. This can impact the performance of

the system.

Scalability: IPC can also limit the scalability of a system, as it may be difficult to manage and

coordinate large numbers of processes communicating with each other.

Security: IPC can introduce security vulnerabilities, as it creates additional attack surfaces for

malicious actors to exploit. For example, a malicious process could attempt to gain unauthorized

access to shared resources or data.

Compatibility: IPC can also create compatibility issues between different systems, as different

operating systems and programming languages may have different IPC mechanisms and APIs.

This can make it difficult to develop cross-platform applications that work seamlessly across

different environments.

Examples of Inter Process Communication: Pipes, Shared Memory, Message Queues, Sockets

SANGYAM SOUNDARYA(Assistant Professor)

(AN UGC AUTONOMOUS INSTITUTION)
Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade

Recognized Under Section 2(f) of UGC Act 1956, ISO 9001:2015 Certified
Vyasapuri, Bandlaguda, Post: Keshavgiri, Hyderabad- 500 005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

(R22)
OPERATING SYSTEM

Lecture Notes

B. Tech II YEAR – I SEM

Prepared by

SANGYAM SOUNDARYA
(Assistant Professor)

Dept.CSE(AIML)

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

OPERATING SYSTEMS
B.Tech. II Year I Sem. L T P C

3 0 0 3
Prerequisites:

1. A course on “Computer Programming and Data Structures”.
2. A course on “Computer Organization and Architecture”.

Course Objectives:

● Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization,
deadlocks, memory management, file and I/O subsystems and protection)

● Introduce the issues to be considered in the design and development of operating system
● Introduce basic Unix commands, system call interface for process management, interprocess

communication and I/O in Unix

Course Outcomes:

● Will be able to control access to a computer and the files that may be shared
● Demonstrate the knowledge of the components of computers and their respective roles in

computing.
● Ability to recognize and resolve user problems with standard operating environments.
● Gain practical knowledge of how programming languages, operating systems, and

architectures interact and how to use each effectively.

UNIT - I
Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared,
Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components,
Operating System services, System Calls
Process - Process concepts and scheduling, Operations on processes, Cooperating Processes,
Threads

UNIT - II
CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling.
System call interface for process management-fork, exit, wait, waitpid, exec
Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock
Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III
Process Management and Synchronization - The Critical Section Problem, Synchronization
Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors
Interprocess Communication Mechanisms: IPC between processes on a single computer system,
IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV
Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping,
Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page
Replacement, Page Replacement Algorithms.

UNIT - V
File System Interface and Operations -Access methods, Directory Structure, Protection, File System
Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close,
lseek, stat, ioctl system calls.

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

TEXT BOOKS:
1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition,

John Wiley.
2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005,
Pearson Education/PHI

2. Operating System A Design Approach- Crowley, TMH.
3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

lOMoAR cPSD|28634726

UNIT-4

https://www.studocu.com/in/document/jawaharlal-nehru-technological-university-hyderabad/operating-systems/os-unit-4-memory-management/10176321?utm_campaign=shared-document&utm_source=studocu-document&utm_medium=social_sharing&utm_content=os-unit-4-memory-management

lOMoAR cPSD|28634726

MAIN MEMORY

UNIT-IV

MEMORY MANAGEMENT

The main purpose of a computer system is to execute programs.

 During the execution of these programs together with the data they access must be stored

in main memory.

 Memory consists of a large array of bytes. Each Byte has its own address.

 CPU fetches instructions from memory according to the value of the program counter.

BASIC HARDWARE

CPU can access data directly only from Main memory and processor registers.

 Main memory and the Processor registers are called Direct Access Storage Devices.

 Any instructions in execution and any data being used by the instructions must be in one

of these direct-access storage devices.

 If the data are not in memory then the data must be moved to main memory before the

CPU can operate on them.

 Registers that are built into the CPU are accessible within one CPU clock cycle.

 Completing a memory access from main memory may take many CPU clock cycles.

Memory access from main memory is done through memory bus.

 In such cases, the processor needs to stall, since it does not have the required data to

complete the instruction that it is executing.

 To avoid memory stall, we need to implement Cache memory in between Main memory

and CPU.

BASE REGISTER & LIMIT REGISTER

Each process has a separate memory space that protects the processes from each other. It is

fundamental to having multiple processes loaded in memory for concurrent execution.

There are two register that provides protection: Base register and Limit register

 Base Register holds the smallest legal physical memory address.

 Limit register specifies the size of the range (i.e. process size).

Example: if the base register holds 300040 and the limit register is 120900, then the program

can legally access all addresses from 300040 through 420939 (inclusive).

03

lOMoAR cPSD|28634726

The base and limit registers can be loaded only by the operating system by using a special

privileged instruction that can be executed only in kernel mode.

 Protection of memory space is accomplished by having the CPU hardware compare every

address generated in user mode with the registers.

 Any attempt by a program executing in user mode to access operating-system memory or

other users’ memory results in a trap to the operating system, which treats the attempt as a

Fatal Error.

 This scheme prevents a user program from either accidentally or deliberately modifying

the code or data structures of other users and the operating system.

Operating system executing in kernel mode is given unrestricted access to both operating-

system memory and users’ memory. This provision allows the operating system to do certain

tasks such as:

 Load users’ programs into users’ memory

 To dump out those programs in case of errors

 To access and modify parameters of system calls

 To perform I/O to and from user memory etc.

Example: A Multiprocessing Operating system must execute context switches, storing the

state of one process from the registers into main memory before loading the next process’s

context from main memory into the registers.

Address Binding

 A program resides on a disk as a binary executable file. The program must be brought

into memory and placed within a process for execution.

 The process may be moved between disk and memory during its execution.

 The processes on the disk that are waiting to be brought into memory for execution are

put into the Input Queue.

Addresses may be represented in different ways during these steps.

 Addresses in the source program are generally symbolic, such as the variable count.

 A compiler typically binds these symbolic addresses to Relocatable addresses such as

“14 bytes from the beginning of this module”.

 The Linkage editor or Loader in turn binds Relocatable addresses to Absolute

addresses such as 74014 (i.e. 74000+14=74014).

 Each binding is a mapping from one address space to another address space.

Binding of instructions and data to memory addresses can be done at any of following steps:

Compile time.

 If you know at compile time where the process will reside in memory then Absolute code

can be generated.

 Example: If you know that a user process will reside starting at location R, then the

generated compiler code will start at that location and extend up from there.

 After some time, if the starting location has been changed then it will be necessary to

recompile this code.

 The MS-DOS .COM-format programs are bound at compile time.

104

lOMoAR cPSD|28634726

Load time

 If it is not known at compile time where the process will reside in memory, then the

compiler must generate Relocatable code.

 In this case, final binding is delayed until load time. If the starting address changes, we

need to reload only the user code to incorporate this changed value.

Execution time

 If the process can be moved during its execution from one memory segment to another,

then binding must be delayed until run time.

 Most general-purpose operating systems use this method.

Logical Versus Physical Address Space

 Logical address is the address generated by the CPU.

 Physical address is the address that is loaded into the Memory-Address Register of the

memory.

 The set of all logical addresses generated by a program is a Logical Address Space.

 The set of all physical addresses corresponding to these logical addresses is a Physical

Address Space.

 The Compile-time and Load-time address-binding methods generate identical logical and

physical addresses.

 The execution-time address binding scheme results in different logical and physical

addresses. At this time we call logical address as Virtual address.

 The run-time mapping from virtual address to physical addresses is done by a hardware

device called the Memory-Management Unit (MMU).

 Base register is now called a Relocation Register. Value in the relocation register is

added to every address generated by a user process at the time the address is sent to

memory.

105

lOMoAR cPSD|28634726

Example: If the base is at 14000, then an attempt by the user to address location 0 is

dynamically relocated to location 14000. An access to location 346 is mapped to location

14346.

 The user program never sees the real Physical addresses. The program can create a

pointer to location 346, store it in memory, manipulate it and compare it with other

addresses all as the number 346.

 Only when it is used as a memory address, it is relocated relative to the base register.

 The user program deals with logical addresses. The Memory-mapping hardware converts

logical addresses into physical addresses.

 Final location of a referenced memory address is not determined until the reference is

made.

Example: Logical addresses in the range 0 to max and Physical addresses in the range (R+0)

to (R + max) for a base value R.

 The user program generates only logical addresses and thinks that the process runs in

locations 0 to max.

 These logical addresses must be mapped to physical addresses before they are used.

Dynamic Loading

With dynamic loading, a routine is not loaded until it is called.

 All routines are kept on disk in a relocatable load format. The main program is loaded

into memory and it is executed.

 When a routine needs to call another routine, the calling routine first checks to see

whether the other routine has been loaded.

 If it has not loaded, the relocatable linking loader is called to load the desired routine into

memory and to update the program’s address tables to reflect this change.

 Then control is passed to the newly loaded routine.

Advantage: It is useful when large amounts of code are needed to handle infrequently

occurring cases, such as error routines. In this case, although the total program size may be

large, the portion that is used may be much smaller.

Note: It is the responsibility of the users to design their programs to support Dynamic

linking. Operating systems may help the programmer by providing library routines to

implement dynamic loading.

106

lOMoAR cPSD|28634726

Dynamic Linking

Dynamically linked libraries are system libraries that are linked to user programs when the

programs are running.

 In static linking system libraries are treated like any other object module and they are

combined by the loader into the binary program image.

 In Dynamic linking, the linking is postponed until execution time.

 This feature is usually used with system libraries, such as language subroutine libraries.

 Without dynamic linking, each program on a system must include a copy of its language

library in the executable image. This will waste both disk space and main memory.

With dynamic linking, a stub is included in the image for each library routine reference.

 The stub is a small piece of code that indicates how to locate the appropriate memory-

resident library routine or how to load the library if the routine is not already present.

 When the stub is executed, it checks to see whether the needed routine is already in

memory. If it is not, the program loads the routine into memory.

 The stub replaces itself with the address of the routine and executes the routine.

 Thus, the next time that particular code segment is reached, the library routine is executed

directly, incurring no cost for dynamic linking.

 Under this scheme, all processes that use a language library execute only one copy of the

library code.

Shared Libraries

 A library may be replaced by a new version and all programs that reference the library

will automatically use the new version.

 Without dynamic linking, all such programs would need to be relinked to gain access to

the new library.

 So that programs will not accidentally execute new or incompatible versions of libraries.

Version information is included in both the program and the library.

 More than one version of a library may be loaded into memory and each program uses its

version information to decide which copy of the library to use.

 Versions with minor changes retain the same version number, whereas versions with

major changes increment the number.

 Thus, only programs that are compiled with the new library version are affected by any

incompatible changes incorporated in it.

 Other programs linked before the new library was installed will continue using the older

library.

 This system is also known as shared libraries.

Note: Dynamic linking and shared libraries require help from the operating system.

SWAPPING

A process must be in Main memory to be executed. A process can be swapped temporarily

out of main memory to a backing store and then brought back into main-memory for

continued execution.

107

lOMoAR cPSD|28634726

Swapping makes it possible for the total physical address space of all processes to exceed the

real physical memory of the system, thus increasing the degree of multiprogramming in a

system.

Standard Swapping

 Standard swapping involves moving processes between main memory and a backing

store.

 The backing store is commonly a fast disk (i.e. Hard Disk). It must be large enough to

accommodate copies of all memory images for all users and it must provide direct access

to these memory images.

 The system maintains a Ready Queue consisting of all processes whose memory images

are on the backing store or in memory and the processes are ready to run.

 Whenever the CPU scheduler decides to execute a process, it calls the dispatcher.

 The dispatcher checks to see whether the next process in the queue is in main memory.

 If it is not in main memory and if there is no free memory region, the dispatcher swaps

out a process currently in main memory and swaps in the desired process. It then reloads

registers and transfers control to the selected process.

 The context-switch time in such a swapping system is fairly high. The major part of the

swap time is transfer time. The total transfer time is directly proportional to the amount of

memory swapped.

 If we want to swap a process, we must be sure that the process is completely idle such as

waiting for I/O.

Standard swapping is not used in modern operating systems. It requires too much swapping

time and provides too little execution time to be a reasonable memory-management solution.

UNIX, Linux and Windows use modified versions of swapping as below:

 Swapping is enabled only when the amount of free memory falls below a threshold

amount.

 Swapping is disabled when the amount of free memory increases.

 Operating system swaps portions of processes rather than the entire process to decrease

the swap time.

Note: This type of swapping works in conjunction with Virtualization.

108

lOMoAR cPSD|28634726

Swapping on Mobile systems

Mobile systems such as iOS and Android do not support swapping.

 Mobile devices generally use flash memory rather than more spacious Hard disks as their

persistent storage.

 Mobile operating-system designers avoid swapping because of the less space constraint.

 Flash memory can tolerate only the limited number of writes before it becomes unreliable

and the poor throughput between main memory and flash memory in these devices.

Alternative methods used in Mobile systems instead of swapping:

 Apple’s iOS asks applications to voluntarily relinquish allocated memory when free

memory falls below a certain threshold.

 Read-only data (i.e. code) are removed from the system and later reloaded from flash

memory if necessary.

 Data that have been modified such as the stack are never removed.

 Any applications that fail to free up sufficient memory may be terminated by the

operating system.

 Android may terminate a process if insufficient free memory is available. Before

terminating a process android writes its Application state to flash memory so that it can

be quickly restarted.

CONTIGUOUS MEMORY ALLOCATION

Memory allocation can be done in two ways:

1. Fixed Partition Scheme (Multi-programming with Fixed Number of Tasks)

2. Variable partition scheme (Multi-programming with Variable Number of Tasks)

Fixed Partition Scheme (MFT)

The memory can be divided into several Fixed-Sized partitions.

 Each partition may contain exactly one process. Thus, the degree of multiprogramming is

bound by the number of partitions.

 In this Multiple-Partition method, when a partition is free, a process is selected from the

input queue and is loaded into the free partition.

 When the process terminates, the partition becomes available for another process.

Note: This method was originally used by the IBM OS/360 operating system (called MFT)

but is no longer in use.

Variable partition scheme (MVT)

In the variable-partition scheme, the operating system keeps a table indicating which parts of

memory are available and which are occupied.

 Initially, all memory is available for user processes and it is considered one large block of

available memory called as Hole.

 Eventually the memory contains a set of holes of various sizes.

 As processes enter the system, they are put into an Input Queue.

 The operating system takes into account the memory requirements of each process and

the amount of available memory space in determining which processes are allocated

memory.

109

lOMoAR cPSD|28634726

 When a process is allocated space, it is loaded into memory and it can then compete for

CPU time.

 When a process terminates, it releases its memory. The operating system may use this

free fill with another process from the input queue.

Memory is allocated to processes until the memory requirements of the next process cannot

be satisfied (i.e.) there is no available block of memory is large enough to hold that process.

Then operating system can wait until a large block is available for the process or it can skip

the process and moves down to the input queue to see whether the smaller memory

requirements of some other process can be met.

 The memory blocks available comprise a set of holes of various sizes scattered

throughout main memory.

 When a process arrives and needs memory, the system searches the set for a hole that is

large enough for this process.

 If the hole is too large, it is split into two parts. One part is allocated to the arriving

process and the other part is returned to the set of holes.

 When a process terminates, it releases its block of memory, which is then placed back in

the set of holes.

 If the new hole is adjacent to other holes, these adjacent holes are merged to form one

larger hole.

 At this point, the system may need to check whether there are processes waiting for

memory and whether this newly freed and recombined memory could satisfy the demands

of any of these waiting processes.

Dynamic Storage Allocation Problem:

The above procedure leads to Dynamic storage allocation problem which concerns how to

satisfy a request of size n from a list of free holes.

There are 3-solutions for this problem: First fit, Best fit, worst fit.

 First fit: It allocates the first hole that is big enough. Searching can start either at the

beginning of the set of holes or at the location where the previous first-fit search ended.

We can stop searching as soon as we find a free hole that is large enough.

 Best fit. It allocates the smallest hole that is big enough. We must search the entire list,

unless the list is ordered by size. This strategy produces the smallest leftover hole.

 Worst fit. It allocates the largest hole. Again, we must search the entire list, unless it is

sorted by size. This strategy produces the largest leftover hole, which may be more useful

than the smaller leftover hole from a best-fit approach.

FRAGMENTATION

There are 2-problems with Memory allocation

1. Internal Fragmentation

2. External Fragmentation

Internal Fragmentation

Consider a multiple-partition allocation scheme with a hole of 18,464 bytes.

110

lOMoAR cPSD|28634726

 Suppose that the next process requests 18,462 bytes. If we allocate exactly the requested

block, we are left with a hole of 2 bytes.

 The overhead to keep track of this hole will be substantially larger than the hole itself.

 The general approach to avoiding this problem is to break the physical memory into

fixed-sized blocks and allocate memory in units based on block size.

 With this approach, the memory allocated to a process may be slightly larger than the

requested memory.

 The difference between these two numbers is Internal Fragmentation. It is unused

memory that is internal to a partition.

External Fragmentation

 Both the first-fit and best-fit strategies for memory allocation suffer from External

Fragmentation.

 As processes are loaded and removed from main memory, the free memory space is

broken into small pieces.

 External fragmentation exists when there is enough total memory space to satisfy a

request but the available spaces are not contiguous, the storage is fragmented into a large

number of small holes.

 External fragmentation problem can be severe. In the worst case, we could have a block

of free memory between every two processes that is wasted.

 If all these small pieces of memory were in one big free block instead, we might be able

to run several more processes.

Solution to External fragmentation

One solution to the problem of external fragmentation is Compaction.

 The goal is to shuffle the memory contents so as to place all free memory together in one

large block.

 Compaction is possible only if relocation is dynamic and is done at execution time.

 If addresses are relocated dynamically, relocation requires only moving the program and

data and then changing the base register to reflect the new base address.

 If relocation is static and is done at assembly or load time, compaction cannot be done.

Note: Compaction can be expensive, because it moves all processes toward one end of

memory. All holes move in the other direction and produces one large hole of available

memory.

Other solutions to External fragmentation are Segmentation and Paging. They allow a

process to be allocated physical memory wherever such memory is available. These are Non-

contiguous memory allocation techniques.

Memory Protection

OS can prevent a process from accessing other process memory. We use two registers for this

purpose: Relocation register and Limit register.

 Relocation register contains the value of the smallest physical address such as 100040.

 Limit register contains the range of logical addresses such as 74600.

 Each logical address must be within the range specified by the limit register.

111

lOMoAR cPSD|28634726

 The relocation-register scheme provides an effective way to allow the operating system’s

size to change dynamically.

 Memory Management Unit maps the logical address dynamically by adding the value in

the relocation register. This mapped address is sent to memory

 When the CPU scheduler selects a process for execution, the dispatcher loads the

relocation register and limit registers with the correct values as part of the context switch.

 Because every address generated by a CPU is checked against these registers, we can

protect both the operating system and the other users’ programs and data from being

modified by this running process.

SEGMENTATION

Segmentation is a memory-management scheme that permits the physical address space of a

process to be noncontiguous.

A logical address space is a collection of segments. Each segment has a name and a length.

 Logical addresses specify both the segment name and the offset within the segment.

 The programmer specifies each address by two quantities: a segment name and an offset.

 The segments are referred to by Segment Number.

 A logical address consisting of two tuples: <Segment Number, offset>

A C compiler might create separate segments for the following:

 The code

 Global variables

 The heap, from which memory is allocated

 The stacks used by each thread

 The standard C library

112

lOMoAR cPSD|28634726

Note: Libraries that are linked in during compile time might be assigned separate segments.

The loader would take all these segments and assign them segment numbers.

Segmentation Hardware

Logical address can be viewed by a programmer as a two dimensional address and where as

actual Physical address is a one dimensional address.

 The Memory Management Unit (MMU) maps two-dimensional user-defined addresses

into one-dimensional physical address.

 This mapping is effected by a Segment table.

 Each entry in the segment table has a segment base and a segment limit.

 The segment base contains the starting physical address where the segment resides in

memory and the segment limit specifies the length of the segment.

A logical address consists of two parts: segment number s and an offset into that segment d.

 The segment number is used as an index to the segment table.

 The offset d of the logical address must be between 0 and the segment limit.

 When an offset is legal, it is added to the segment base to produce the address in physical

memory of the desired byte.

 If d>=segment limit, it is illegal then an addressing error trap will be generated that

indicates logical addressing attempt beyond end of segment.

 The segment table is essentially an array of base–limit register pairs.

Example: Consider the below diagram that have five segments numbered from 0 to 4. The

segments are stored in physical memory.

113

lOMoAR cPSD|28634726

The segment table has a separate entry for each segment, giving the beginning address of the

segment in physical memory (i.e. base) and the length of that segment (i.e. limit).

1. Segment 2 is 400 bytes long and begins at location 4300. Thus, a reference to byte 53 of

segment 2 is mapped onto location 4300 + 53 = 4353.

2. A reference to segment 3, byte 852 is mapped to 3200 (base of segment 3) + 852 = 4052.

3. A reference to byte 1222 of segment 0 would result in a trap to the operating system, as

this segment is only 1,000 bytes long.

PAGING

Paging also permits the physical address space of a process to be noncontiguous.

Paging avoids External fragmentation and need for compaction.

Paging is implemented through cooperation between the operating system and the computer

hardware.

 Physical memory is divided into fixed-sized blocks called Frames.

 Logical memory is divided into blocks of the same size called Pages.

 Frame size is equal to the Page size.

 When a process is to be executed, its pages are loaded into any available memory frames

from their source such as a file system or backing store.

 The backing store is divided into fixed-sized blocks that are the same size as the memory

frames or clusters of multiple frames.

 Frame table maintains list of frame and the allocation details of the frames (i.e.) A frame

is free or allocated to some page.

 Each process has its own page table. When a page is loaded into main memory the

corresponding page table is active in the system and all other page tables are inactive.

 Page tables and Frame tables are kept in main memory. A Page-Table Base Register

(PTBR) points to the page table.

 Every address generated by the CPU is divided into two parts: a page number (p) and a

page-offset (d).

 The page number is used as an index into a Page table. The page table contains the base

address of each page in physical memory.

 This base address is combined with the page offset to define the physical memory address

that is sent to the memory unit.

114

lOMoAR cPSD|28634726

The below shows the paging of Logical and Physical memory:

 The page size is defined by the hardware. The size of a page is a power of 2.

 Depending on the computer architecture the page size varies between 512 bytes and 1 GB

per page.

 The selection of a power of 2 as a page size makes the translation of a logical address into

a page number and page offset particularly easy.

 If the size of the logical address space is 2
m

 and a page size is 2
n
 bytes, then the high-

order (m–n) bits of a logical address designate the page number and the n low-order bits

designate the page offset.

The logical address contains: p is an index into the page table and d is the displacement

within the page.

Example: consider the memory in the below figure where n= 2 and m = 4.

Using a page size of 4 bytes and a physical memory of 32 bytes (8 pages), we show how the

programmer’s view of memory can be mapped into physical memory.

 Logical address 0 is page 0, offset 0. Indexing into the page table, we find that page 0 is

in frame 5. Thus, logical address 0 maps to physical address 20 [= (5 × 4) + 0].

 Logical address 3 (page 0, offset 3) maps to physical address 23 [= (5 × 4) + 3].

 Logical address 4 is page 1, offset 0; according to the page table, page 1 is mapped to

frame 6. Thus, logical address 4 maps to physical address 24 [= (6 × 4) + 0].

 Logical address 13 maps to physical address 9.

115

lOMoAR cPSD|28634726

Paging scheme avoids external fragmentation but it creates internal fragmentation because of

fixed size pages.

 If page size is 2048 bytes, a process of 20489 bytes will need 10 pages plus 9 bytes.

 It will be allocated 11 frames, resulting in internal fragmentation of 2048−9 = 2037 bytes.

 In the worst case, a process would need n pages plus 1 byte. It would be allocated n + 1

frames resulting in internal fragmentation of almost an entire frame.

 If the page size is small then the number of entries in page table is more this will leads to

huge number of context switches.

 If the page size is large then the number of entries in page table is less and the number of

context switches is less.

Paging separates the programmer’s view of memory and the actual physical memory

 The programmer views memory as one single space, containing only this one program.

 In fact, the user program is scattered throughout physical memory, which also holds other

programs.

 The difference between the programmer’s view of memory and the actual physical

memory is reconciled by the Address-Translation Hardware. The logical addresses are

translated into physical addresses.

 This mapping is hidden from the programmer and is controlled by the operating system.

 User process is unable to access memory that it does not own (i.e. other process memory).

 It has no way of addressing memory outside of its page table and the table includes only

those pages that the process owns.

Problem: Slow access of a user memory location

 If we want to access location i, we must first index into the page table using the value in

the PTBR offset by the page number for i. This task requires a memory access.

 It provides us with the frame number, which is combined with the page offset to produce

the actual address. We can then access the desired place in memory.

 With this scheme, two memory accesses are needed to access a byte (i.e.) one for the

page-table entry, one for the byte.

 Thus, memory access is slowed by a factor of 2. This delay is intolerable.

Solution: Translation Look-aside Buffer (TLB)

TLB is a special, small, fast lookup hardware cache. It is associative, high-speed memory.

116

lOMoAR cPSD|28634726

 Each entry in the TLB consists of two parts: a key (or tag) and a value.

 The size of TLB is between 32 and 1024 entries.

 When the associative memory is presented with an item, the item is compared with all

keys simultaneously.

 If the item is found, the corresponding value field is returned.

 Multiple levels of TLBs are maintained if the system is having multiple levels of Cache.

The TLB contains only a few of the page-table entries.

 When a logical address is generated by the CPU, its page number is presented to the TLB.

 If the page number is found, its frame number is immediately available and is used to

access memory. This is called TLB Hit.

 These TLB lookup steps are executed as part of the instruction pipeline within the CPU,

which does not add any performance penalty compared with a system that does not

implement paging.

 If the page number is not in the TLB is known as a TLB miss. At the time of TLB miss, a

memory reference to the page table must be made.

 Depending on the CPU, this may be done automatically in hardware or via an interrupt to

the OS. When the frame number is obtained, we can use it to access memory.

 Then we add the page number and frame number to the TLB, so that they will be found

quickly on the next reference.

 If the TLB is already full of entries, an existing entry must be selected for replacement by

using any of page replacement algorithms.

 Wired Down entries: These are the entries that cannot be removed from the TLB.

Examples for these are Key Kernel Code entries.

Address Space Identifiers (ASID’s) in TLB

TLBs store Address-Space Identifiers in each TLB entry.

 An ASID uniquely identifies each process and is used to provide address-space protection

for that process.

 When the TLB attempts to resolve virtual page numbers, it ensures that the ASID for the

currently running process matches the ASID associated with the virtual page.

 If the ASIDs do not match, the attempt is treated as a TLB miss.

 In addition to providing address-space protection, an ASID allows the TLB to contain

entries for several different processes simultaneously.

 If the TLB does not support separate ASIDs, then every time a new page table is selected,

the TLB must be flushed or erased to ensure that the next executing process does not use

the wrong translation information.

 Otherwise, the TLB could include old entries that contain valid virtual addresses but have

incorrect or invalid physical addresses left over from the previous process.

TLB Hit Ratio/ Miss Ratio

Percentage of times that the page number is found in the TLB is called the Hit ratio.

Percentage of times that the page number is not found in the TLB is called the Miss ratio.

117

TLB Miss ratio=1-Hit ratio

lOMoAR cPSD|28634726

Effective Memory Access Time

It is the sum of time taken for a page to access for TLB hit ratio and TLB miss ratio.

Example: An 80-percent hit ratio means that we find the desired page number in the TLB 80

percent of the time. If it takes 100 nanoseconds to access memory, then a mapped-memory

access takes 100 nanoseconds when the page number is in the TLB.

If we fail to find the page number in the TLB then we must first access memory for the page

table and frame number for 100 nanoseconds and then access the desired byte in memory for

100 nanoseconds with a total of 200 nanoseconds.

Effective Memory Access Time = (0.80 × 100 ns) + (0.20 × 200 ns)

= 120 nanoseconds

Memory Protection in Paging Environment

Memory protection in a paged environment is accomplished by protection bits associated

with each frame. These bits are kept in the page table.

 A one bit valid–invalid bit is attached to each entry in the page table.

 When this bit is set to valid, the associated page is in the process’s logical address space

and it is a legal or valid page.

 When the bit is set to invalid, the page is not in the process’s logical address space. Illegal

addresses are trapped by use of the valid–invalid bit.

 The operating system sets this bit for each page to allow or disallow access to the page.

Consider the above figure: A system with a 14-bit address space (0 to 16383), we have a

program that should use only addresses 0 to 10468. Each page size is of 2 KB.

 Addresses in pages 0, 1, 2, 3, 4 and 5 are mapped normally through the page table.

 Any attempt to generate an address in pages 6 or 7 will find that the valid–invalid bit is

set to invalid and the computer will trap to the operating system indicating that Invalid

page reference.

Problem: The program extends only to address 10468, any reference beyond that address is

illegal. But references to page 5 are classified as valid, so accesses to addresses up to 12287

are valid. Only the addresses from 12288 to 16383 are invalid.

Solution: To avoid this problem we use a register Page-Table Length Register (PTLR) to

indicate the size of the page table. This PLTR value is checked against every logical address

to verify that the address is in the valid range for the process.

118

lOMoAR cPSD|28634726

Shared Pages

Paging has an advantage of Sharing Common Code This is important in Time sharing

Environment.

Consider the above figure that shows a system that supports 40 users, each of whom executes

a text editor.

 If the text editor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB

to support the 40 users.

 If the code is Reentrant Code or Pure Code or Reusable code it can be shared.

 Each process has its own data page. All three processes sharing a three-page editor each

page 50 KB in size.

 Reentrant code is non-self-modifying code (i.e.) it never changes during execution. Thus,

two or more processes can execute the same code at the same time.

 Each process has its own copy of registers and data storage to hold the data for the

process’s execution. The data for two different processes will be different.

Only one copy of the editor need be kept in physical memory.

 Each user’s page table maps onto the same physical copy of the editor, but data pages are

mapped onto different frames.

 Thus, to support 40 users, we need only one copy of the editor (150 KB), plus 40 copies

of the 50 KB of data space per user.

 The total space required is now 2,150 KB instead of 8,000 KB by saving 5850 KB.

Other heavily used programs can also be shared such as compilers, window systems, run-time

libraries, database systems and so on.

STRUCTURE OF THE PAGE TABLE

Page tables can be structured in 3 ways:

1. Hierarchical Paging

2. Hashed Page Tables

3. Inverted Page Tables

Hierarchical Paging

Most modern computer systems support a large logical address space (2
32

 to 2
64

 Bytes) that

leads to excessively larger page tables.

119

lOMoAR cPSD|28634726

Consider a system with a 32-bit (4GB) logical address space.

 If the page size in such a system is 4 KB (2
12

), then a page table may consist of up to 1

million entries (2
32

/2
12

).

 Assuming that each entry consists of 4 bytes, each process may need up to 4 MB of

physical address space for the page table alone.

 These page tables are not allocated in main memory contiguously and we will divide this

page tables into smaller pieces.

Hierarchical paging uses Two Level Paging Algorithm for structuring of page tables. In Two

level paging algorithm Page tables are itself paged.

Consider the system with a 32-bit logical address space and a page size of 4 KB.

 A logical address is divided into a page number consisting of 20 bits and a page offset

consisting of 12 bits.

 Because we page the page table, the page number is further divided into a 10-bit page

number and a 10-bit page offset.

A logical address has two indexes: p1 and p2.

 p1 is an index into the outer page table

 p2 is the displacement within the page of the inner page table.

The below figure shows the Address translation for a Two-level 32-bit paging architecture.

Address translation works from the outer page table inward, this scheme is also known as a

Forward-Mapped Page Table.

120

lOMoAR cPSD|28634726

Example of Two level paging: VAX Mini Computer

 The VAX was the most popular minicomputer from 1977 through 2000.

 The VAX architecture supported a variation of Two-Level paging.

 The VAX is a 32- bit machine with a page size of 512 bytes.

 The logical address space of a process is divided into 4-equal sections, each of which

consists of 2
30

 bytes.

 Each section represents a different part of the logical address space of a process.

 The first 2 high-order bits of the logical address designate the appropriate section.

 The next 21 bits represent the logical page number of that section and the final 9 bits

represent an offset in the desired page.

 By partitioning the page table in this manner, the operating system can leave partitions

unused until a process needs them.

 Entire sections of virtual address space are frequently unused and multilevel page tables

have no entries for these spaces, greatly decreasing the amount of memory needed to

store virtual memory data structures.

An address on the VAX architecture consists of 3-parts: Segment number (s), index to page

table (p), Displacement with in the page (d).

 After this scheme is used, the size of a one-level page table for a VAX process using one

section is 2
21

 bits ∗ 4 bytes per entry = 8 MB.

 To further reduce main-memory use, the VAX pages the user-process page tables.

Problems with Two level paging

For a system with a 64-bit logical address space, a two-level paging scheme is no longer

appropriate.

Let’s take the page size in such a system is 4 KB (2
12

). In this case, the page table consists of

up to 2
52

 entries. If we use a two-level paging scheme, then the inner page tables can

conveniently be one page long or contain 2
10

 4-byte entries.

The outer page table consists of 2
42

 entries or 2
44

 bytes. The obvious way to avoid such a

large table is to divide the outer page table into smaller pieces.

To avoid this problem we can divide the outer page again called Three level paging.

Three level paging

Suppose that the outer page table is made up of standard-size pages (2
10

 entries or 2
12

 bytes).

In this case, a 64-bit address space is still daunting:

Outer page table is still 2
34

 bytes (16 GB) in size. We can still divide this into 4-Level paging.

121

lOMoAR cPSD|28634726

Hashed Page Tables

Hashed page table is used to handling address spaces larger than 32 bits.

Each entry in the hash table contains a linked list of elements that hash to the same location to

handle collisions.

Each element consists of three fields:

1. Virtual page number

2. Value of the mapped page frame

3. A pointer to the next element in the linked list.

 The virtual page number in the virtual address is hashed into the hash table.

 The virtual page number is compared with field 1 in the first element in the linked list.

 If there is a match, the corresponding page frame (field 2) is used to form the desired

physical address.

 If there is no match, subsequent entries in the linked list are searched for a matching

virtual page number.

For 64 bit address space Clustered page table has been proposed.

 Clustered page tables are similar to hashed page tables except that each entry in the hash

table refers to several pages (such as 16) rather than a single page.

 Therefore, a single page-table entry can store the mappings for multiple physical-page

frames.

 Clustered page tables are particularly useful for sparse address spaces, where memory

references are noncontiguous and scattered throughout the address space.

Inverted Page Tables

Problem wih page tables:

 Each process has an associated page table. The page table has one entry for each page that

the process is using.

 Processes reference pages through the pages’ virtual addresses.

 The operating system must then translate this reference into a physical memory address.

 Since the table is sorted by virtual address, the operating system is able to calculate where

in the table the associated physical address entry is located and to use that value directly.

 The drawback of this method is, each page table may consist of Millions of entries.

 These tables may consume large amounts of physical memory just to keep track of how

other physical memory is being used.

122

lOMoAR cPSD|28634726

Solution: Inverted page tables will solve the above problem

An inverted page table has one entry for each real page (i.e. frame) of memory.

 Each entry consists of the virtual address of the page stored in that real memory location

with information about the process that owns the page.

 Thus, only one page table is in the system and it has only one entry for each page of

physical memory.

 Inverted page tables often require that an address-space identifier be stored in each entry

of the page table, since the table usually contains several different address spaces

mapping physical memory. Storing the address-space identifier ensures that a logical page

for a particular process is mapped to the corresponding physical page frame.

Examples: Inverted page tables are used in the 64-bit UltraSPARC and PowerPC systems.

The above figure shows the inverted page tables used in IBM RT:

 Each virtual address in the system consists of: <process-id, page-number, offset>

 Each inverted page-table entry is a pair <process-id, page-number> where the process-id

is the address-space identifier.

 When a memory reference occurs, part of the virtual address, consisting of <process-id,

page-number> is presented to the memory subsystem. The inverted page table is then

searched for a match.

 If a match is found at entry i then the physical address <i, offset> is generated.

 If no match is found, then an illegal address access has been attempted.

Problem with inverted page table

 Although this scheme decreases the amount of memory needed to store each page table, it

increases the amount of time needed to search the table when a page reference occurs.

 Systems that use inverted page tables have difficulty implementing shared memory.

Oracle SPARC Solaris

Oracle SPARC Solaris is a modern 64-bit CPU and operating system that are tightly

integrated to provide low-overhead virtual memory.

 Solaris running on the SPARC CPU is a fully 64-bit operating system and solves the

problem of virtual memory without using up all of its physical memory by keeping

multiple levels of page tables.

 It uses 2-Hash Tables: one for the kernel and one for all user processes. Each maps

memory addresses from virtual to physical memory.

123

lOMoAR cPSD|28634726

 Each hash-table entry represents a contiguous area of mapped virtual memory, which is

more efficient than having a separate hash-table entry for each page.

 Each entry has a base address and a span indicating the number of pages the entry

represents.

Virtual-to-physical translation would take too long if each address required searching through

a hash table, so the CPU implements a TLB that holds translation table entries (TTEs) for fast

hardware lookups.

 A cache of these TTEs reside in a Translation Storage Buffer (TSB), which includes an

entry per recently accessed page.

 When a virtual address reference occurs, the hardware searches the TLB for a translation.

If none is found, the hardware walks through the in-memory TSB looking for the TTE

that corresponds to the virtual address that caused the lookup. This TLB walk

functionality is found on many modern CPUs.

 If a match is found in the TSB, the CPU copies the TSB entry into the TLB and the

memory translation completes.

 If no match is found in the TSB, the kernel is interrupted to search the hash table. The

kernel then creates a TTE from the appropriate hash table and stores it in the TSB for

automatic loading into the TLB by the CPU memory-management unit.

 Finally, the interrupt handler returns control to the MMU, which completes the address

translation and retrieves the requested byte or word from main memory.

INTEL ARCHITECTURE (IA-32)

The 16-bit Intel 8086 appeared in the late 1970s. Intel 8088 16-bit chip was used in the

original IBM PC.

 Both Intel 8086 chip and the 8088 chip were based on a segmented architecture.

 Intel later produced a series of 32-bit chips (IA-32), which included the family of 32-bit

Pentium processors.

 The IA-32 architecture supported both paging and segmentation.

 Recently Intel has produced a series of 64-bit chips based on the x86-64 architecture.

 Windows, Mac OS X and Linux operating systems run on Intel chips.

Memory management in IA-32 systems is divided into 2 components:

1. Segmentation

2. Paging.

 The CPU generates logical addresses, which are given to the segmentation unit.

 The segmentation unit produces a linear address for each logical address.

 The linear address is then given to the paging unit, which in turn generates the physical

address in main memory.

 Thus, the segmentation and paging units form the equivalent of the memory-management

unit (MMU).

124

lOMoAR cPSD|28634726

IA-32 Segmentation

The IA-32 architecture allows a segment to be as large as 4 GB and the maximum number of

segments per process is 16K.

The logical address space of a process is divided into two partitions.

 The first partition consists of up to 8K segments that are private to that process.

 The second partition consists of up to 8 K segments that are shared among all the

processes.

 Information about the first partition is kept in the Local Descriptor Table (LDT).

 Information about the second partition is kept in the Global Descriptor Table (GDT).

 Each entry in the LDT and GDT consists of an 8-byte segment descriptor with detailed

information about a particular segment, including the base location and limit of that

segment.

The logical address is a pair <selector, offset>, where the selector is a 16-bit number, it

consists of:

 13-bit Segment number (s)

 1-bit Location of segment in GDT or LDT (g)

 2-bit protection

 The offset is a 32-bit number specifying the location of the byte within the segment.

The machine has six segment registers, allowing six segments to be addressed at any one time

by a process. It also has six 8-byte micro-program registers to hold the corresponding

descriptors from either the LDT or GDT. This cache lets the Pentium avoid having to read the

descriptor from memory for every memory reference.

The linear address on the IA-32 is 32 bits long and is formed as follows.

 Segment register points to the appropriate entry in the LDT or GDT.

 The base and limit information about the segment is used to generate a Linear Address.

 First, the limit is used to check for address validity.

 If the address is not valid, a memory fault is generated, resulting in a trap to the operating

system.

 If it is valid, then the value of the offset is added to the value of the base, resulting in a 32-

bit linear address.

125

lOMoAR cPSD|28634726

IA-32 Paging

The IA-32 architecture allows a page size of either 4 KB or 4 MB. For 4-KB pages, IA-32

uses a two-level paging scheme in which the division of the 32-bit linear address is as

follows:

 The 10 high-order bits reference an entry in the outermost page table, which IA-32 terms

the Page directory. The CR3 register points to the page directory for the current process.

 The page directory entry points to an inner page table that is indexed by the contents of

the innermost 10 bits in the linear address.

 The low-order bits 0–11 refer to the offset in the 4-KB page pointed to in the page table.

 One entry in the page directory is the Page Size flag. If Page Size flag is set that indicates

the size of the page frame is 4 MB and not the standard 4 KB.

 If this flag is set, the page directory points directly to the 4-MB page frame bypassing the

inner page table and the 22 low-order bits in the linear address refer to the offset in the 4-

MB page frame.

To improve the efficiency of physical memory use, IA-32 page tables can be swapped to

disk.

 In this case, an invalid bit is used in the page directory entry to indicate whether the table

to which the entry is pointing is in memory or on disk.

 If the table is on disk, the operating system can use the other 31-bits to specify the disk

location of the table. The table can then be brought into memory on demand.

As software developers began to discover the 4-GB memory limitations of 32-bit

architectures, Intel adopted a Page Address Extension (PAE), which allows 32-bit

processors to access a physical address space larger than 4 GB.

The fundamental difference introduced by PAE support was that paging went from a two-

level scheme to a three-level scheme, where the top two bits refer to a Page Directory

Pointer Table.

126

lOMoAR cPSD|28634726

The below figure illustrates a PAE system with 4-KB pages.

PAE also increased the page-directory and page-table entries from 32 to 64 bits in size, which

allowed the base address of page tables and page frames to extend from 20 to 24 bits.

 Combined with the 12-bit offset, adding PAE support to IA-32 increased the address

space to 36 bits, which supports up to 64 GB of physical memory.

 It is important to note that operating system support is required to use PAE. Both Linux

and Intel Mac OS X support PAE.

 32-bit versions of Windows desktop operating systems still provide support for only 4 GB

of physical memory, even if PAE is enabled.

127

lOMoAR cPSD|28634726

VIRTUAL MEMORY

INTRODUCTION

 Virtual Memory is a technique that allows the execution of processes that are not

completely in Main-memory.

 Virtual memory involves the separation of Logical Memory as perceived by users from

Physical Memory.

 This separation allows an extremely large virtual memory to be provided for

programmers when only a smaller physical memory is available.

 A program would no longer be constrained by the amount of physical memory that is

available. Users would be able to write programs for a large virtual address space.

 Because each user program could take less physical memory, more programs could be run

at the same time with a corresponding increase in CPU utilization and throughput but it

will not increase the Response time or Turnaround time.

 Less I/O would be needed to load or swap user programs into memory, so each user

program would run faster. This process will benefit both system and user.

Virtual Address Space of a process refers to the logical (or virtual) view of how a process is

stored in memory. The below figure shows a virtual address space:

128

lOMoAR cPSD|28634726

 In the above figure, a process begins at a certain logical address (say address 0) and exists

in contiguous memory.

 Physical memory organized in page frames and the physical page frames assigned to a

process may not be contiguous.

 Memory Management Unit (MMU) maps logical pages to physical page frames in

Main memory.

 In the above figure, we allow the heap to grow upward in memory as it is used for

dynamic memory allocation.

 We allow for the stack to grow downward in memory through successive function calls.

 The large blank space (i.e. hole) between the heap and the stack is part of the Virtual

address space but will require actual physical pages only if the heap or stack grows.

Virtual address spaces that include holes are known as Sparse Address Spaces.

 Using a Sparse Address Space is beneficial because the holes can be filled as the stack or

heap segments grow or if we wish to dynamically link libraries or possibly other shared

objects during program execution.

Shared Library using Virtual Memory

System libraries can be shared by several processes through mapping of the shared object into

a virtual address space.

 Each process considers the libraries to be part of its virtual address space, the actual pages

where the libraries reside in physical memory are shared by all the processes.

 A library is mapped read-only into the space of each process that is linked with it.

 Two or more processes can communicate through the use of shared memory.

 Virtual memory allows one process to create a region of memory that it can share with

another process.

 Processes sharing this region consider it is part of their virtual address space, yet the

actual physical pages of memory are shared.

 Pages can be shared during process creation with the fork() system call, thus speeding up

process creation.

DEMAND PAGING

With Demand-paged virtual memory, pages are loaded only when they are demanded during

program execution. Pages that are never accessed are never loaded into physical memory.

129

lOMoAR cPSD|28634726

 A demand-paging system is similar to a paging system with swapping, where processes

reside in secondary memory (i.e. disk).

 Demand paging uses the concept of Lazy Swapper or Lazy Pager. A lazy swapper or

pager never swaps a page into memory unless that page will be needed.

 Valid–Invalid bit is used to distinguish between the pages that are in memory and the

pages that are on the disk.

 When this bit is set to “valid,” the associated page is both legal and is in main memory.

 If the bit is set to “invalid,” the page either is not valid (i.e. not in the logical address

space of the process) or is valid but is currently on the disk.

 The page-table entry for a page that is brought into main memory is set to valid, but the

page-table entry for a page that is not currently in main memory is either marked as

invalid or contains the address of the page on disk.

Note: The process executes and accesses pages that are Main Memory Resident then the

execution proceeds normally.

PAGE FAULT

Access to a page marked invalid causes a Page Fault. The paging hardware, in translating the

address through the page table will notice that the invalid bit is set that causes a trap to the

operating system. This trap is the result of the operating system’s failure to bring the desired

page into memory.

130

lOMoAR cPSD|28634726

Procedure for Handling Page Fault

1. We check an internal page table kept with the Process Control Block for this process to

determine whether the reference was a valid or an invalid memory access.

2. If the reference was invalid, we terminate the process. If it was valid but we have not yet

brought in that page, we now page it in.

3. We find a free frame (Example: by taking one from the free-frame list).

4. We schedule a disk operation to read the desired page into the newly allocated frame.

5. When the disk read is complete, we modify the internal table kept with the process and

also the page table to indicate that the page is now in memory.

6. We restart the instruction that was interrupted by the trap. The process can now access the

page in main memory.

Pure Demand Paging

 System can start executing a process with no pages in memory.

 When the operating system sets the instruction pointer to the first instruction of the

process and that process is not resides in main memory then the process immediately

faults for the page.

 After this page is brought into memory, the process continues to execute and faulting as

necessary until every page that it needs is in memory.

 At that point, it can execute with no more faults. This scheme is called Pure Demand

Paging.

 Pure Demand Paging never brings a page into memory until it is required.

Hardware support for Demand Paging

The hardware to support demand paging is the same as the hardware for paging and

swapping:

 Page table has the ability to mark an entry as invalid through a valid–invalid bit or a

special value of protection bits.

 Secondary Memory holds those pages that are not present in main memory. The

secondary memory is usually a high-speed disk. It is known as the swap device and the

section of disk used for this purpose is known as Swap Space.

131

lOMoAR cPSD|28634726

Performance of Demand Paging

Demand paging can significantly affect the performance of a computer system.

 As long as we have no page faults, the effective access time is equal to the memory

access time.

 If a page fault occurs, we must first read the relevant page from disk and then access the

desired word.

 Where ma denotes Memory Access Time

 p be probability of a page fault (0 ≤ p ≤ 1). If p is closer to zero then there are few page

faults.

Sequence of Steps followed by Page Fault

1. Trap to the operating system.

2. Save the user registers and process state.

3. Determine that the interrupt was a page fault.

4. Check the page reference was legal and determines the location of the page on the disk.

5. Issue a read from the disk to a free frame:

a. Wait in a queue for this device until the read request is serviced.

b. Wait for the device seek and/or latency time.

c. Begin the transfer of the page to a free frame.

6. While waiting, allocate the CPU to some other user by using CPU scheduling.

7. Receive an interrupt from the disk I/O subsystem (I/O completed).

8. Save the registers and process state for the other user.

9. Determine that the interrupt was from the disk.

10. Correct the page table and other tables to show that the desired page is now in memory.

11. Wait for the CPU to be allocated to this process again.

12. Restore the user registers, process state and new page table and then resume the

interrupted instruction.

Example: With an average page-fault service time of 8 milliseconds and a memory access

time of 200 nanoseconds, the effective access time in nanoseconds is:

Effective Access Time = (1 − p) × (200) + p (8 milliseconds)

= (1 − p) × 200 + p × 8,000,000

= 200 + 7,999,800 × p.

Note: The effective access time is directly proportional to the Page-Fault rate.

COPY-ON-WRITE

 The fork() system call creates a child process that is a duplicate of its parent.

 fork() worked by creating a copy of the parent’s address space for the child, duplicating

the pages belonging to the parent.

 Many child processes invoke the exec() system call immediately after creation and the

copying of the parent’s address space may be unnecessary.

 Copy-on-Write is a technique which allows the parent and child processes initially to

share the same pages.

 These shared pages are marked as Copy-on-Write pages, meaning that if either process

writes to a shared page, a copy of the shared page is created.

132

Effective Access Time = (1 − p) × ma + p × page fault time

lOMoAR cPSD|28634726

Example: Assume that the child process attempts to modify a page containing portions of the

stack, with the pages set to be Copy-on-Write.

 Operating system will create a copy of this page, mapping it to the address space of the

child process.

 The child process will then modify its own copied page but not the page belonging to the

parent process.

 When the Copy-on-Write technique is used, only the pages that are modified by either

process are copied.

 Only pages that can be modified need be marked as Copy-on-Write. Pages that cannot be

modified can be shared by the parent and child processes.

 Windows XP, Linux and Solaris operating systems uses Copy-on-Write technique.

Zero-fill-on-demand

 When it is determined that a page is going to be duplicated using Copy-on-Write, it is

important to note the location from which the free page will be allocated.

 Many operating systems provide a pool of free pages for such requests. These free pages

are typically allocated when the stack or heap for a process must expand or when there

are Copy-on-Write pages to be managed.

 OS typically allocate these pages using a technique known as Zero-fill-on-demand. In

Zero-fill-on-demand the previous contents of the pages are erased before being allocated.

vfork(): Virtual Memory fork

vfork() does not support Copy-on-Write technique used by Solaris and Linux.

vfork() is modified version of fork() system call.

 With vfork(), the parent process is suspended and the child process uses the address

space of the parent.

 Because vfork() does not use Copy-on-Write, if the child process changes any pages of

the parent’s address space, the altered pages will be visible to the parent once it resumes.

 Therefore, vfork() must be used with caution to ensure that the child process does not

modify the address space of the parent.

 vfork() is intended to be used when the child process calls exec() immediately after

creation.

 vfork() is an extremely efficient because it does not copy any pages at the time of process

creation. Vfork() sometimes used to implement UNIX command-line shell interfaces.

133

lOMoAR cPSD|28634726

PAGE REPLACEMENT ALGORITHMS

 If no frame is free, we find one that is not currently being used and free it.

 We can free a frame by writing its contents to swap space and changing the page table to

indicate that the page is no longer in main memory.

 We can now use the freed frame to hold the page for which the process faulted.

We modify the page-fault service routine to include Page Replacement:

1. Find the location of the desired page on the disk.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a Page-Replacement algorithm to select a Victim frame.

c. Write the victim frame to the disk and change the page table and frame table.

3. Read the desired page into newly freed frame and change the page table and frame table.

4. Continue the user process from where the page fault occurred.

Modify bit or Dirty bit

Each page or frame has a modify bit associated with it in the hardware.

 The modify bit for a page is set by the hardware whenever any byte in the page has been

modified.

 When we select a page for replacement, we examine its modify bit.

 If the bit is set, the page has been modified since it was read in from the disk. Hence we

must write the page to the disk.

 If the modify bit is not set, the page has not been modified since it was read into memory.

Hence there is no need for write the memory page to the disk, because it is already there.

Note: To determine the number of page faults for a particular reference string and page-

replacement algorithm, we also need to know the number of page frames available. As the

number of frames available increases, the number of page faults decreases.

There is several Page Replacement Algorithms are in use:

1. FIFO Page Replacement Algorithm

2. Optimal Page Replacement Algorithm

3. LRU Page Replacement Algorithm

4. Counting Based Page Replacement Algorithm

134

lOMoAR cPSD|28634726

First-In-First-Out Page Replacement Algorithm

FIFO algorithm associates with time of each page when it was brought into main memory.

 When a page must be replaced, the oldest page is chosen.

 We can create a FIFO queue to hold all pages in memory.

 We replace the page at the Head of the queue.

 When a page is brought into memory, we insert it at the tail of the queue.

Example: Consider the below reference string and memory with three frames

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

 First 3-references (7, 0, 1) cause 3-Page faults and are brought into these empty frames.

 The next reference (2) replaces page 7, because page 7 was brought in first.

 Since 0 is the next reference and 0 is already in memory, we have no fault for this

reference.

 The first reference to 3 results in replacement of page 0, since it is now first in line.

Because of this replacement, the next reference to 0, will fault. Page 1 is then replaced by

page 0.

 By the end, there are Fifteen page faults altogether.

Problem: Belady’s Anomaly

Belady’s Anomaly states that: the page-fault rate may increase as the number of allocated

frames increases. Researchers identifies that Belady’s anomaly is solved by using Optimal

Replacement algorithm.

Optimal Page Replacement Algorithm (OPT Algorithm)

 It will never suffer from Belady’s anomaly.

 OPT states that: Replace the page that will not be used for the longest period of time.

 OPT guarantees the lowest possible page fault rate for a fixed number of frames.

Example: Consider the below reference string and memory with three frames

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

 The first 3-references cause faults that fill the 3-empty frames.

 The reference to page 2 replaces page 7, because page 7 will not be used until reference

number 18, whereas page 0 will be used at 5 and page 1 at 14.

135

lOMoAR cPSD|28634726

 The reference to page 3 replaces page 1 because page 1 will be the last of the three pages

in memory to be referenced again.

 At the end there are only 9-page faults by using optimal replacement algorithm which is

much better than a FIFO algorithm with 15-page faults.

Note: No replacement algorithm can process this reference string in 3-frames with fewer

than 9-faults.

Problem with Optimal Page Replacement algorithm

The optimal page-replacement algorithm is difficult to implement, because it requires future

knowledge of the reference string. The optimal algorithm is used mainly for comparison

studies (i.e. performance studies).

LRU Page Replacement Algorithm

In LRU algorithm, the page that has not been used for the longest period of time will be

replaced (i.e.) we are using the recent past as an approximation of the near future.

LRU replacement associates with each page the time of that page’s last use.

Example: Consider the below reference string and memory with three frames

7, 0, 1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2, 1, 2, 0, 1, 7, 0, 1

 The first five faults are the same as those for optimal replacement.

 When the reference to page 4 occurs LRU replacement sees that out of the three frames in

memory, page 2 was used least recently.

 Thus, the LRU algorithm replaces page 2, not knowing that page 2 is about to be used.

 When it then faults for page 2, the LRU algorithm replaces page 3, since it is now the

least recently used of the three pages in memory.

 The total number of page faults with LRU is 12 which is less as compared to FIFO.

LRU can be implemented in two ways: Counters and Stack

Counters

 Each page-table entry is associated with a time-of-use field and add to the CPU a logical

clock or counter. The clock is incremented for every memory reference.

 Whenever a reference to a page is made, the contents of the clock register are copied to

the time-of-use field in the page-table entry for that page.

 We replace the page with the smallest time value. This scheme requires a search of the

page table to find the LRU page and a write to memory to the time-of-use field in the

page table for each memory access.

 The times must also be maintained when page tables are changed due to CPU scheduling.

Stack

LRU replacement is implemented by keeping a stack of page numbers.

136

lOMoAR cPSD|28634726

 Whenever a page is referenced, it is removed from the stack and put on the top.

 In this way, the most recently used page is always at the top of the stack and the least

recently used page is always at the bottom.

 Because entries must be removed from the middle of the stack, it is best to implement this

approach by using a doubly linked list with a Head pointer and a Tail pointer.

 Removing a page and putting it on the top of the stack then requires changing six pointers

at worst.

 Each update is a little more expensive, but there is no search for a replacement.

 The tail pointer points to the bottom of the stack, which is the LRU page.

 This approach is particularly appropriate for software or microcode implementations of

LRU replacement.

Counting-Based Page Replacement Algorithm

There are two approaches in this scheme: LFU and MFU

Least Frequently Used (LFU)

 In LFU page-replacement algorithm, the page with the smallest count will be replaced.

 Reason for this selection is that an actively used page should have a large reference count.

 A problem arises when a page is used heavily during the initial phase of a process but

then is never used again.

 Since it was used heavily, it has a large count and remains in memory even though it is no

longer needed.

 One solution is to shift the counts right by 1 bit at regular intervals, forming an

exponentially decaying average usage count.

Most Frequently Used (MFU)

In MFU page-replacement algorithm is based on the argument that the page with the smallest

count was probably just brought in and has yet to be used.

Note: Neither MFU nor LFU replacement is common. The implementation of these

algorithms is expensive and they do not approximate OPT replacement well.

Example:2 Consider the below reference string and the frame size is 3.

2,3,2,1,5,2,4,5,3,2,5,2

137

lOMoAR cPSD|28634726

ALLOCATION OF FRAMES

There are different approaches used for allocation of frames:

1. Minimum Number of Frames

2. Allocation Algorithms

3. Global versus Local Allocation

4. Non-Uniform Memory Access

Minimum Number of Frames

Allocation is based on minimum number of frames per process is defined by the computer

architecture. The maximum number is defined by the amount of available physical memory.

We must also allocate at least a minimum number of frames.

 One reason for allocating at least a minimum number of frames involves performance.

 When a page fault occurs before an executing instruction is complete, the instruction must

be restarted.

 As the number of frames allocated to each process decreases, the page-fault rate increases

and slows the process execution.

 Hence the process must have enough frames to hold all the different pages that any single

instruction can reference.

Allocation Algorithms

There are two algorithm are used: Equal allocation and Proportional allocation.

Equal Allocation

 This algorithm splits m frames among n processes is to give everyone an equal share, m/n

frames.

 Example: If there are 93 frames and five processes, each process will get 18 frames

(93/5=18). The 3-leftover frames can be used as a free-frame buffer pool.

Problem with Equal Allocation

Consider a system with a 1-KB frame size and two processes P1 and P2.

 Process P1 is of 10 KB and process P2 is of 127 KB are the only two processes running

in a system with 62 free frames.

 Now if we apply Equal allocation then both P1 and P2 will get 31 frames.

 It does not make sense to give P1 process to 31 frames where its maximum use is 10

frames and other 21 frames are wasted.

Proportional Allocation

 In this algorithm we allocate available memory to each process according to its size.

 Let the si be the size of the virtual memory for process Pi then S = si

 If the total number of available frames is m, we allocate ai frames to process Pi, where ai

is approximately: ai = si/S × m.

 We must adjust each ai to be an integer that is greater than the minimum number of

frames required by the instruction set, with a sum not exceeding m.

Example: With proportional allocation, we would split 62 frames between 2-processes, one

of 10 pages and one of 127 pages, by allocating 4 frames for P1 and 57 frames for P2.

P1-> 10/137 × 62 ≈ 4

P2-> 127/137 × 62 ≈ 57

138

lOMoAR cPSD|28634726

In this way both processes share the available frames according to their “needs,” rather than

equally.

Global versus Local Allocation

With multiple processes competing for frames, we can classify page-replacement algorithms

into two broad categories: Global Replacement and Local Replacement.

 Global replacement allows a process to select a replacement frame from the set of all

frames, even if that frame is currently allocated to some other process (i.e.) one process

can take a frame from another process.

 Local replacement requires that each process select from only its own set of allocated

frames.

Example: Consider an allocation scheme wherein we allow High-priority processes to select

frames from low-priority processes for replacement.

 A process can select a replacement from its own frames or the frames of any lower-

priority process.

 This approach allows a High-priority process to increase its frame allocation at the

expense of a low-priority process.

 With a local replacement strategy, the number of frames allocated to a process does not

change.

 With global replacement, a process may happen to select only frames allocated to other

processes, thus increasing the number of frames allocated to it.

Non-Uniform Memory Access (NUMA)

 Consider a system is made up of several system boards, each containing multiple CPUs

and some memory.

 In systems with multiple CPUs, a one CPU can access some sections of main memory

faster than it can access others.

 The system boards are interconnected in various ways, ranging from system buses to

High-speed network connections.

 The CPUs on a particular board can access the memory on that board with less delay than

they can access memory on other boards in the system.

 Systems in which memory access times vary significantly are known collectively as Non-

Uniform Memory Access (NUMA) systems.

 NUMA systems are slower than systems in which memory and CPUs are located on the

same motherboard.

THRASHING

A process is thrashing if it is spending more time for paging than executing.

 If the number of frames allocated to a low-priority process falls below the minimum

number required by the computer architecture, we must suspend that process’s execution.

 We should then page out its remaining pages, freeing all its allocated frames.

 This provision introduces a swap-in, swap-out level of intermediate CPU scheduling.

 If the process does not have the number of frames it needs to support pages in active use,

it will quickly page-fault and the process must replace some page.

139

lOMoAR cPSD|28634726

 Since all of its pages are in active use, it must replace a page that will be needed again

right away. Consequently, it quickly faults again and again by replacing pages that it must

bring back in immediately.

 This high paging activity is called Thrashing.

Cause of Thrashing

The operating system monitors CPU utilization. If CPU utilization is too low, we increase the

degree of multiprogramming by introducing a new process to the system.

 If a global page-replacement algorithm is used then it replaces pages without regard to the

process to which the pages are belongs to.

 Now suppose that a process enters a new phase in its execution and needs more frames. It

starts faulting and taking frames away from other processes.

 These processes need those pages which have been faulted earlier so they also fault taking

frames from other processes.

 These faulting processes must use the paging device to swap pages in and out.

 As they queue up for the paging device, the ready queue empties. As processes wait for

the paging device, CPU utilization decreases.

 The CPU scheduler sees the decreasing CPU utilization and increases the degree of

multiprogramming by introducing new process in to the system again.

 The new process tries to get started by taking frames from running processes, causing

more page faults and a longer queue for the paging device.

 As a result, CPU utilization drops even further and the CPU scheduler tries to increase the

degree of multiprogramming even more.

 Thrashing has occurred and system throughput decreases. The page fault rate increases

tremendously. As a result, the effective memory-access time increases.

 No work is getting done, because the processes are spending all their time paging.

Consider the above figure that show how thrashing will occur:

 As the degree of multiprogramming increases, CPU utilization also increases until a

maximum is reached.

 If the degree of multiprogramming is increased even further then thrashing occurs and

CPU utilization drops sharply.

 At this point, we must stop thrashing and increase the CPU utilization by decreasing the

the degree of multiprogramming.

Solutions to Thrashing

1. Local Replacement Algorithm (or) Priority Replacement Algorithm

2. Locality Model

140

lOMoAR cPSD|28634726

Local Replacement Algorithm

 With local replacement, if one process starts thrashing, it cannot steal frames from

another process.

 Local replacement Algorithm limits thrashing but it cannot avoid thrashing entirely.

 If processes are thrashing, they will be paging device queue most of the time.

 The average service time for a page fault will increase because of the longer average

queue for the paging device.

 Thus, the effective access time will increase even for a process that is not thrashing.

Locality Model

 The locality model states that, as a process executes, it moves from locality to locality.

 A locality is a set of pages that are actively used together. A program is generally

composed of several different localities, which may overlap.

Example: When a function is called, it defines a new locality. In this locality, memory

references are made to the instructions of the function call, its local variables and a subset of

the global variables. When we exit the function, the process leaves this locality, since the

local variables and instructions of the function are no longer in active use. We may return to

this locality later.

Note: Localities are defined by the program structure and its data structures.

Suppose we allocate enough frames to a process to accommodate its current locality.

 It will fault for the pages in its locality until all these pages are in memory; then, it will

not fault again until it changes localities.

 If we do not allocate enough frames to accommodate the size of the current locality, the

process will thrash, since it cannot keep in memory all the pages that it is actively using.

VIRTUAL MEMORY IN WINDOWS

Windows implements virtual memory using demand paging with Clustering.

 Clustering handles page faults by bringing in not only the faulting page but also several

pages following the faulting page.

 When a process is first created, it is assigned a working-set minimum and maximum.

 The Working-set Minimum is the minimum number of pages the process is guaranteed

to have in memory.

 If sufficient memory is available, a process may be assigned as many pages as its

Working-set Maximum.

 The virtual memory manager maintains a list of free page frames. A threshold value is

associated with this free frame list that is used to indicate whether sufficient free memory

is available.

 If a page fault occurs for a process that is below its working-set maximum, the virtual

memory manager allocates a page from this list of free pages.

 If a process that is at its working-set maximum incurs a page fault, it must select a page

for replacement using a local LRU page-replacement policy.

141

lOMoAR cPSD|28634726

 When the amount of free memory falls below the threshold, the virtual memory manager

uses a tactic known as Automatic Working-set Trimming to restore the value above the

threshold.

 Automatic working-set trimming works by evaluating the number of pages allocated to

processes.

 If a process has been allocated more pages than its working-set minimum, the virtual

memory manager removes pages until the process reaches its working-set minimum.

 A process that is at its working-set minimum may be allocated pages from the free-page-

frame list once sufficient free memory is available.

 Windows performs working-set trimming on both user mode and system processes.

142

(AN UGC AUTONOMOUS INSTITUTION)
Approved by AICTE, Affiliated to JNTUH, Accredited by NAAC with 'A' Grade

Recognized Under Section 2(f) of UGC Act 1956, ISO 9001:2015 Certified
Vyasapuri, Bandlaguda, Post: Keshavgiri, Hyderabad- 500 005, Telangana, India.

https://www.mist.ac.in E-mail:principal.mahaveer@gmail.com, Mobile: 8978380692

Department of Computer Science and Engineering (AIML)

(R22)
OPERATING SYSTEM

Lecture Notes

B. Tech II YEAR – I SEM

Prepared by

SANGYAM SOUNDARYA
(Assistant Professor)

Dept.CSE(AIML)

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

OPERATING SYSTEMS
B.Tech. II Year I Sem. L T P C

3 0 0 3
Prerequisites:

1. A course on “Computer Programming and Data Structures”.
2. A course on “Computer Organization and Architecture”.

Course Objectives:

● Introduce operating system concepts (i.e., processes, threads, scheduling, synchronization,
deadlocks, memory management, file and I/O subsystems and protection)

● Introduce the issues to be considered in the design and development of operating system
● Introduce basic Unix commands, system call interface for process management, interprocess

communication and I/O in Unix

Course Outcomes:

● Will be able to control access to a computer and the files that may be shared
● Demonstrate the knowledge of the components of computers and their respective roles in

computing.
● Ability to recognize and resolve user problems with standard operating environments.
● Gain practical knowledge of how programming languages, operating systems, and

architectures interact and how to use each effectively.

UNIT - I
Operating System - Introduction, Structures - Simple Batch, Multiprogrammed, Time-shared,
Personal Computer, Parallel, Distributed Systems, Real-Time Systems, System components,
Operating System services, System Calls
Process - Process concepts and scheduling, Operations on processes, Cooperating Processes,
Threads

UNIT - II
CPU Scheduling - Scheduling Criteria, Scheduling Algorithms, Multiple -Processor Scheduling.
System call interface for process management-fork, exit, wait, waitpid, exec
Deadlocks - System Model, Deadlocks Characterization, Methods for Handling Deadlocks, Deadlock
Prevention, Deadlock Avoidance, Deadlock Detection, and Recovery from Deadlock

UNIT - III
Process Management and Synchronization - The Critical Section Problem, Synchronization
Hardware, Semaphores, and Classical Problems of Synchronization, Critical Regions, Monitors
Interprocess Communication Mechanisms: IPC between processes on a single computer system,
IPC between processes on different systems, using pipes, FIFOs, message queues, shared memory.

UNIT - IV
Memory Management and Virtual Memory - Logical versus Physical Address Space, Swapping,
Contiguous Allocation, Paging, Segmentation, Segmentation with Paging, Demand Paging, Page
Replacement, Page Replacement Algorithms.

UNIT - V
File System Interface and Operations -Access methods, Directory Structure, Protection, File System
Structure, Allocation methods, Free-space Management. Usage of open, create, read, write, close,
lseek, stat, ioctl system calls.

R22 B.Tech. CSE (AI and ML) Syllabus JNTU Hyderabad

TEXT BOOKS:
1. Operating System Principles- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition,

John Wiley.
2. Advanced programming in the UNIX environment, W.R. Stevens, Pearson education.

REFERENCE BOOKS:

1. Operating Systems- Internals and Design Principles, William Stallings, Fifth Edition–2005,
Pearson Education/PHI

2. Operating System A Design Approach- Crowley, TMH.
3. Modern Operating Systems, Andrew S. Tanenbaum 2nd edition, Pearson/PHI
4. UNIX programming environment, Kernighan and Pike, PHI/ Pearson Education
5. UNIX Internals -The New Frontiers, U. Vahalia, Pearson Education.

lOMoAR cPSD|28634726

UNIT -V

lOMoAR cPSD|28634726

UNIT-5

FILE SYSTEM INTERFACE

FILE CONCEPT

A file is a named collection of related information that is recorded on secondary storage.

 A file is the smallest allotment of logical secondary storage (i.e.) data cannot be written to

secondary storage unless they are within a file.

 Files represent programs and data. Data files may be numeric, alphanumeric or binary.

 The information in a file is defined by its creator.

 Different types of information may be stored in a file such as source or executable

programs, numeric or text data, photos, music, video and so on.

A file structure depends on its type:

 Text file is a sequence of characters organized into lines.

 Source file is a sequence of functions, each of which is further organized as declarations

followed by executable statements.

 Executable file is a series of code sections that the loader can bring into memory and

execute.

File Attributes

A file is referred to by its name. The following are the list of file attributes:

 Name: The symbolic file name is the only information kept in human-readable form.

 Identifier: This is a unique number that identifies the file within the file system. It is the

non-human-readable name for the file.

 Type: This information is needed for systems that support different types of files.

 Location: It is a pointer to a device and to the location of the file on that device.

 Size: The current size of the file and the maximum size are included in this attribute.

 Protection: It is access-control information determines who can do reading, writing,

executing and so on.

 Time, Date and User Identification: This information kept for creation, last

modification and last use. These data can be useful for protection, security and usage

monitoring.

Directory structure keeps information about all files. It resides on secondary storage.

 A directory entry consists of the file’s name and its unique identifier.

 The identifier locates the other file attributes.

 It may take more than a kilobyte to record this information for each file.

File Operations

There are 6 basic operations performed on file and corresponding System call are:

1. Creating a file: create() system call is used to create a file. To create a file Operating

system checks whether there is enough space in the system. If yes, then a new entry will

be made in the directory structure.

2. Repositioning within a file. The directory is searched for the appropriate entry and the

current-file-position pointer is repositioned to a given value. Repositioning within a file

need not involve any actual I/O. This file operation is also known as a File-Seek.

143

lOMoAR cPSD|28634726

3. Deleting a file: delete() system call is used to delete a file. To deete a file, we search the

directory for the named file. If we found the associated directory entry, we release all file

space and erase the directory entry.

4. Truncating a file. The user erases all the contents of a file but keep its attributes. The

length of the file will be reset to zero.

5. Writing a file. write() system call is used to write a file. It specifies both the name of the

file and the information to be written to the file. The system searches the filename in the

directory to find the file’s location.

6. Reading a file. read() system call is used to read from a file. It specifies the name of the

file and where the next block of the file should be put. The directory is searched for the

associated entry.

Note: A process is usually either reading from or writing to a file, the current operation

location can be kept as a per-process Current-File-Position Pointer. Both the read and write

operations use this same pointer.

open() and close() system calls

 System calls open() and close() are used to open and to close a file respectively.

 OS maintains information about all open files in Open-File Table.

 When a file operation is requested, the file is indexed into Open File Table.

 When a file is closed by a process then the OS removes its entry from the open-file table.

Operating system uses 2-levels of Internal tables:

1. Per-Process Table The per-process table tracks all files that a process has open. This

table stores information regarding the process’s use of the file. Each entry in the per-

process table in turn points to a system-wide open-file table.

2. System-Wide Table: It contains process-independent information, such as the location of

the file on disk, access dates and file size. Once a file has been opened by one process, the

system-wide table includes an entry for the file. When another process executes an open(

) call, a new entry is added to the process’s open-file table pointing to the appropriate

entry in the system-wide table.

An open file is associated with following information:

 File pointer: This pointer is unique to each process operating on the file. It must be kept

separate from the on-disk file attributes. On systems that do not include a file offset as

part of the read() and write() system calls, the system must track the last read– write

location as a current-file-position pointer.

 File-open count: The open-file table also has an open count associated with each file to

indicate how many processes have opened that file. Each close() decreases the open

count. When the open count reaches zero, the file is no longer in use and the file’s entry is

removed from the open-file table.

 Disk location of the file: Most file operations require the system to modify data several

times within the file. The information needed to locate the file on disk is kept in main-

memory so that the system does not have to read it from disk for each operation.

 Access rights: Each process opens a file in an access mode. This information is stored on

the per-process table so the operating system can allow or deny subsequent I/O requests.

144

lOMoAR cPSD|28634726

File Types

 File types are generally included as part of file name. The file name is split into two parts:

a name and an extension usually separated by a dot.

 The system uses the extension to indicate the type of the file and the type of operations

that can be done on that file.

Example: resume.docx, server.c and ReaderThread.cpp.

The below table shows the common file types:

File Type Extension Function

executable exe, com, bin or none ready-to-run machinelanguage program

Object obj, o compiled, machine language, not linked

source code c, cc, java, perl, asm source code in various languages

batch Bat,sh commands to the command interpreter

markup xml, html, tex textual data, documents

word processor xml, rtf,docx various word-processor formats

library lib, a, so, dll libraries of routines for programmers

print or view gif, pdf, jpg ASCII or binary file in a format for printing or
viewing

archive rar, zip, tar related files grouped into one file, sometimes
compressed, for archiving or storage

multimedia mpeg, mov, mp3,
mp4, avi

binary file containing audio or A/V
information

Internal File Structure

 Locating an offset within a file can be complicated for the operating system.

 Disk systems have a well-defined block size determined by the size of a sector.

 All disk I/O is performed in units of one block (physical record). All blocks are the same

size.

Problem: It is unlikely that the physical record size will exactly match the length of the

desired logical record. Logical records may have different lengths.

Solution: Packing a number of logical records into physical blocks solves this problem.

Example: The UNIX operating system defines all files to be streams of bytes.

Each byte is individually addressable by its offset from the beginning of the file.

 Logical record size, physical block size and packing technique determine how many

logical records are in each physical block.

 Packing can be done either by the user’s application program or by the operating system.

Note: All file systems suffer from internal fragmentation. The larger the block size, the

greater the internal fragmentation.

ACCESS METHODS

Files store information. When a file is used, this information must be accessed and read into

computer memory. The information in the file can be accessed in several ways:

1. Sequential Access

2. Direct Access

3. Indexed Access

145

lOMoAR cPSD|28634726

Sequential Access

Information in the file is processed in order, one record after the other record.

Example: editors and compilers usually access files in sequential order.

Reads and writes make up the bulk of operations on a file:

 read_next() operation reads the next portion of the file and automatically advances a file

pointer, which tracks the I/O location.

 write_next() operation appends to the end of the file and advances to the end of the

newly written material.

Sequential access is based on a tape model of a file and works on sequential-access devices.

Direct Access or Relative Access

 In direct access method, the file is viewed as a numbered sequence of blocks or records.

 There are no restrictions on the order of reading or writing for a direct-access file.

 Thus, we may read block 14, then read block 53 and then write block 7.

 A file is made up of fixed-length logical records that allow programs to read and write

records rapidly in no particular order.

 The direct-access method is based on a disk model of a file, since disks allow random

access to any file block.

 Databases are direct access type. When a query concerning a particular subject arrives,

we compute which block contains the answer and then read that block directly to provide

the desired information.

Example: Airline-reservation system

 We might store all the information about a particular flight 713 in the block identified by

the flight number.

 The number of available seats for flight 713 is stored in block 713 of the reservation file.

 To store information about a larger set, such as people, we might compute a hash function

on the people’s names to determine a block to read and search.

File operation in Direct Access Method

read(n) and write(n) are the read and write operation performed in Direct Access method

where n represent the block number.

The block number provided by the user to the operating system is a Relative Block Number.

 A relative block number is an index relative to the beginning of the file.

 Thus, the first relative block of the file is 0, the next is 1 and so on.

 Relative block numbers allows the OS to decide where the file should be placed and helps

to prevent user from accessing portions of the file system that may not be part of its file.

Indexed Access

The index is like an index in the back of a book that contains pointers to the various blocks.

 To find a record in the file, we first search the index and then use the pointer to access the

file directly and to find the desired record.

146

lOMoAR cPSD|28634726

 To find a record we can make a binary search of the index. This search helps us to know

exactly which block contains the desired record and access that block.

 This structure allows us to search a large file doing little I/O.

 With large files, the index file itself may become too large to be kept in memory.

 One solution is to create an index for the index file. The primary index file contains

pointers to secondary index files, which point to the actual data items.

DIRECTORY AND DISK STRUCTURE

Files are stored on random-access storage devices such as Hard-disks, Optical-disks and

Solid-state disks.

 A storage device can be used for a file system. It can be subdivided for finer-grained

control.

 Ex: A disk can be partitioned into quarters. Each quarter can hold a separate file system.

 Partitioning is useful for limiting the sizes of individual file systems, putting multiple file-

system types on the same device or leaving part of the device available for other uses,

such as swap space or unformatted (raw) disk space.

 A file system can be created on each of these disk partitions. Any entity containing a file

system is generally known as a Volume.

 Volume may be a subset of a device, a whole device. Each volume can be thought of as a

virtual disk.

 Volumes can also store multiple operating systems. Volumes allow a system to boot and

run more than one operating system.

 Each volume contains a file system maintains information about the files in the system.

 This information is kept in entries in a Device directory or Volume table of contents.

 The device directory (directory) records information such as name, location, size and

type for all files on that volume.

The below figure shows the typical file system organization:

147

lOMoAR cPSD|28634726

Storage Structure in Solaris OS

The file systems of computers can be extensive. Even within a file system, it is useful to

segregate files into groups and manage those groups. This organization involves the use of

directories.

Consider the types of file systems in the Solaris Operating system:

 Tmpfs is a ―temporary‖ file system that is created in volatile main memory and has its

contents erased if the system reboots or crashes

 objfs is a ―virtual‖ file system that gives debuggers access to kernel symbols

 ctfs is a virtual file system that maintains ―contract‖ information to manage which

processes start when the system boots and must continue to run during operation

 lofs is a ―loop back‖ file system that allows one file system to be accessed in place of

another file system.

 procfs is a virtual file system that presents information on all processes as a file system

 ufs, zfs are general-purpose file systems.

Operations on Directory

Different operations performed on a directory are:

 Search for a file. This operation searches a directory structure to find the entry for a

particular file. It finds all files whose names match with a particular pattern.

 Create a file. When a new file is created its entry is added to the directory.

 Delete a file. When a file is no longer needed, we can remove it from the directory.

 List a directory. We need to be able to list the files in a directory and the contents of the

directory entry for each file in the list.

 Rename a file. A file can be renamed, when the contents or use of the file changes (i.e.)

csec.txt to cse.txt or cse.txt to cse.c file etc.

 Traverse the file system. We may wish to access every directory and every file within a

directory structure.

LOGICAL STRUCTURE OF A DIRECTORY

The different directory structures are:

1. Single Level Directory

2. Two-Level Directory

3. Tree Structured Directory

4. Acyclic-Graph Directories

5. General Graph Directory

Single-Level Directory

In Single-Level Directory structure, all files are contained in the same directory.

 A single-level directory has significant limitations that when the number of files increases

or when the system has more than one users, all files are in the same directory, they must

have unique names.

148

lOMoAR cPSD|28634726

 Even a single user on a single-level directory may find it difficult to remember the names

of all the files as the number of files increases.

 It is common for a user to have hundreds of files on one computer system.

 Keeping track of so many files is a difficult task.

Two-Level Directory

 In the two-level directory structure, each user has his own user file directory (UFD).

 Each UFD lists only the files of a single user.

 When a user job starts or a user logs in, the system’s Master File Directory (MFD) is

searched. MFD is indexed by user name or account number and each entry points to the

UFD for that user.

 When a user refers to a particular file, only his own UFD is searched. Thus, different

users may have files with same name as long as all the file names within each UFD are

unique.

 To create a file for a user, the operating system searches only that user’s UFD to check

whether another file of that name exists.

 To delete a file, the operating system confines its search to the local UFD; thus, it cannot

accidentally delete another user’s file that has the same name.

 This way the two-level directory structure solves the name-collision problem.

 To name a particular file uniquely in a two-level directory, we must give both the user

name and the file name.

A two-level directory can be thought of as a tree or an inverted tree, of height 2.

 The root of the tree is the MFD.

 MFD’s direct descendants are the UFDs.

 The descendants of the UFDs are the files.

 The files are the leaves of the tree.

Specifying a user name and a file name defines a path in the tree from the root (MFD) to a

leaf (a file).

 A user name and a file name define a path name.

 Every file in the system has a path name.

 To name a file uniquely, a user must know the path name of desired file.

The user directories themselves must be created and deleted as necessary.

 A special system program is run with the appropriate user name and account information.

 The program creates a new UFD and adds an entry in the MFD.

 The execution of this program might be restricted to system administrators.

149

lOMoAR cPSD|28634726

Disadvantages:

 This structure effectively isolates one user from another.

 Isolation is an advantage when the users are completely independent but it is a

disadvantage when the users want to cooperate on some task and to access others files.

 Some systems simply do not allow one local user files to be accessed by other users.

Tree-Structured Directories

Tree Structure allows users to create their own subdirectories and to organize their files

accordingly.

 The tree has a root directory and every file in the system has a unique path name.

 A directory (or) subdirectory contains a set of files or subdirectories.

 A directory is simply another file, but it is treated in a special way. All directories have

the same internal format.

 One bit in each directory entry defines the entry as a file (0) or as a subdirectory (1).

Each process has a current directory. The current directory should contain most of the files

that are of current interest to the process.

 When reference is made to a file, the current directory is searched.

 If a file is needed that is not in the current directory, then the user must specify a path

name or change the current directory to the directory holding that file.

 To change directories, a system call is provided that takes a directory name as a parameter

and uses it to redefine the current directory.

 Thus, the user can change the current directory whenever the user wants.

Path names can be of 2-types: Absolute and Relative path name.

1. An absolute path name begins at the root and follows a path down to the specified file,

giving the directory names on the path.

2. A relative path name defines a path from the current directory.

Example: If the current directory is root/spell/mail then the relative path name prt/first

refers to the same file as does the absolute path name root/spell/mail/prt/first.

Deletion of Directory

If a directory is empty, its entry will be deleted form corresponding the directory.

If the directory to be deleted is not empty but contains several files or subdirectories then one

of the two approaches can be followed:

150

lOMoAR cPSD|28634726

1. Some systems will not delete a directory unless it is empty. Thus, to delete a directory,

the user must first delete all the files in that directory.

2. When a request is made to delete a directory, all the directory’s files and subdirectories

are also to be deleted. Example: UNIX rm command used for this purpose.

Note: With a tree-structured directory system, users can be allowed to access the files of

other users. Example: user B can access a file of user A by specifying its path names.

Acyclic-Graph Directories

The acyclic graph is a natural generalization of the tree-structured directory scheme.

 A tree structure prohibits the sharing of files or directories.

 An acyclic graph is a graph with no cycles allows directories to share subdirectories and

files. The same file or subdirectory may be in two different directories.

 With a shared file, only one actual file exists, so any changes made by one person are

immediately visible to the other.

 Sharing is particularly important for subdirectories; a new file created by one person will

automatically appear in all the shared subdirectories.

 UNIX implements Shared files and subdirectories by creating a new directory entry called

a Link. A link is effectively a pointer to another file or subdirectory.

Example: A link may be implemented as an absolute or a relative path name.

 When a reference to a file is made, we search the directory.

 If the directory entry is marked as a link, then the name of the real file is included in the

link information.

 We resolve the link by using that path name to locate the real file.

 Links are easily identified by their format in the directory entry and Links are effectively

indirect pointers.

 The operating system ignores these links when traversing directory trees to preserve the

acyclic structure of the system.

Problems with Acyclic-Graph Directories

1. A file may now have multiple absolute path names. Consequently, distinct file names

may refer to the same file.

2. Deletion of shared file is problematic. Because more than one user is using the file if

one user deletes a shared file, it may leave dangling pointers to non-existence file for

other users.

151

lOMoAR cPSD|28634726

General Graph Directory

General Graph Directory structure is an acyclic graph with Cycles.

 A problem with using an acyclic-graph structure is ensuring that there are no cycles.

 In tree-structure directory we can add new files and subdirectories to an existing tree-

structured directory preserves the tree-structured nature but if we add links, the tree

structure is destroyed, resulting in a simple graph structure.

 The primary advantage of an acyclic graph is the relative simplicity of the algorithms to

traverse the graph and to determine when there are no more references to a file.

 If cycles are allowed to exist in the directory, we likewise want to avoid searching any

component twice, for reasons of correctness as well as performance.

 Problem: A poorly designed algorithm might result in an infinite loop continually

searching through the cycle and never terminating.

 Solution: we can limit arbitrarily the number of directories that will be accessed during a

search.

FILE-SYSTEM MOUNTING

A file system must be mounted before it can be available to processes on the system.

 The directory structure may be built out of multiple volumes, which must be mounted to

make them available within the file-system name space.

 When a file system is mounting, the operating system is given the name of the device and

the Mount point.

 The mount point is the location within the file structure where the file system is to be

attached. In general a mount point is an empty directory.

 Example: On a UNIX system, a file system containing a user’s home directories might be

mounted as /home, then to access the directory structure within that file system, we could

precede the directory names with /home, as in /home/jane.

 After mounting, the operating system verifies that the device contains a valid file system.

 Finally, the operating system notes in its directory structure that a file system is mounted

at the specified mount point.

Consider the above file system, the triangles represent subtrees of directories.

 Figure (a) shows existing systems and Figure (b) shows Unmounted volume residing on

/device/dsk.

 The last figure shows the mounting of the volume residing on /device/dsk over /users.

152

lOMoAR cPSD|28634726

Mounting in Windows Operating System

 The Microsoft Windows family of operating systems maintains an extended two-level

directory structure, with devices and volumes assigned drive letters.

 Volumes have a general graph directory structure associated with the drive letter.

 The path to a specific file takes the form of drive-letter:\path\to\file (i.e. F:\dir\f1.txt)

PROTECTION

The information is stored on the computer system. Protection deals with issue of improper

access of information to the illegitimate users.

Protection provides controlled access by limiting the types of file access that can be made.

Several different types of operations may be controlled:

 Read. Read from the file.

 Write. Write or rewrite the file.

 Execute. Load the file into memory and execute it.

 Append. Write new information at the end of the file.

 Delete. Delete the file and free its space for possible reuse.

 List. List the name and attributes of the file.

 Renaming, copying and editing the file, may also be controlled.

Access Control

 Different users may need different types of access to a file or directory.

 Systems uses Access-control list (ACL) Scheme that specifies user names and the types

of access allowed for each user.

 When a user requests access to a particular file, the operating system checks the access

list associated with that file.

 If that user is listed for the requested access, the access is allowed. Otherwise a protection

violation occurs and the user job is denied access to the file.

Many systems recognize three classifications of users in connection with each file:

 Owner: The user who created the file is the owner.

 Group: A set of users who are sharing the file and need similar access is a work group.

 Universe: All other users in the system constitute the universe.

153

lOMoAR cPSD|28634726

Protection in UNIX

In the UNIX system, groups can be created and modified only by the manager or super user.

 With the more limited protection classification, only three fields are needed to define

protection.

 Each field is a collection of bits and each bit either allows or prevents the access

associated with it.

 The UNIX system defines three fields of 3 bits each—rwx, where r controls read access,

w controls write access and x controls execution.

 A separate field is kept for the file owner, for the file’s group and for all other users.

 In this scheme, 9 bits per file are needed to record protection information.

FILE-SYSTEM STRUCTURE

File systems are maintained on Secondary Storage Disks.

Two reasons for storing file systems on disk are:

1. A disk can be rewritten in place (i.e.) It is possible to read a block from the disk, modify

the block and write it back into the same place.

2. A disk can access directly any block of information it contains. Thus, it is simple to

access any file either sequentially or randomly and switching from one file to another

requires only moving the read–write heads and waiting for the disk to rotate.

I/O transfers between memory and disk are performed in units of blocks.

 Each block has one or more sectors.

 Depending on the disk drive, sector size varies from 32 bytes to 4,096 bytes; the usual

size is 512 bytes.

 File systems provide efficient and convenient access to the disk by allowing data to be

stored, located and retrieved easily.

Design issues of File System

1. Defining how the file system should look to the user. This task involves defining a file

and its attributes, the operations allowed on a file and the directory structure for

organizing files.

2. Creating algorithms and data structures to map the logical file system onto the physical

secondary-storage devices.

Layered Structured File System

154

lOMoAR cPSD|28634726

 I/O control level consists of device drivers and interrupt handlers to transfer information

between the main memory and the disk system.

 Basic File System needs only to issue generic commands to the appropriate device driver

to read and write physical blocks on the disk.

 Each physical block is identified by its numeric disk address

 Example: drive 1, cylinder 73, track 2, sector 10.

 Basic file system layer also manages the memory buffers and caches that hold various

file-system, directory and data blocks.

 File-Organization Module knows about files and their logical blocks, as well as physical

blocks.

 The file-organization module includes the free-space manager, which tracks unallocated

blocks and provides these blocks to the file-organization module when requested.

 Logical File System manages metadata information. Metadata includes all of the file-

system structure except the actual data (or) contents of the files.

 Logical File System maintains file structure via File-Control Blocks. A File-Control

Block (FCB) contains information about the file, including ownership, permissions and

location of the file contents. In UNIX FCB is called as an inode.

 The logical file system is also responsible for protection.

Advantage: Layered structure minimizes the duplication of code. Code reusability is possible

with this structure.

Disadvantage: Layering can introduce more operating-system overhead, which may result in

decreased performance.

File systems supported by different Operating systems

1. UNIX uses the UNIX File System (UFS) is based on Berkeley Fast File System (FFS).

2. Windows supports disk file-system formats of FAT, FAT32 and NTFS as well as CD-

ROM and DVD file-system formats.

3. Standard Linux file system is known as the Extended File System, with the most

common versions being ext3 and ext4.

FILE SYSTEM IMPLEMENTATION

Several on-disk and in-memory structures are used to implement a file system. These

structures vary depending on the operating system and the file system.

On-Disk Structure

The file system may contain information about how to boot an operating system stored on

disk, the total number of blocks, the number and location of free blocks, the directory

structure and individual files.

Several On-Disk structure are given below:

Boot Control Block

 A Boot Control Block (per volume) can contain information needed by the system to boot

an operating system from that volume.

 If the disk does not contain an operating system, this block can be empty.

 It is typically the first block of a volume.

 In UFS, it is called the Boot Block. In NTFS, it is the Partition Boot Sector.

155

lOMoAR cPSD|28634726

Volume Control Block

 A Volume Control Block (per volume) contains volume (or) partition details such as the

number of blocks in the partition, the size of the blocks, a free-block count and free-block

pointers and a free-FCB count and FCB pointers.

 In UFS, this is called a Super-Block. In NTFS, it is stored in the Master File Table.

Directory Structure

 A directory structure (per file system) is used to organize the files.

 In UFS, this includes file names and associated inode numbers.

 In NTFS, it is stored in the master file table.

Per-File FCB

 A per-file FCB contains many details about the file.

 It has a unique identifier number to allow association with a directory entry.

 In NTFS, this information is actually stored within the master file table, which uses a

relational database structure, with a row per file.

In-Memory Structure

The in-memory information is used for both file-system management and performance

improvement via caching. The data are loaded at mount time, updated during file-system

operations and discarded at dismount.

Several in-memory structures are given below:

 An in-memory mount table contains information about each mounted volume.

 An in-memory directory-structure cache holds the directory information of recently

accessed directories. For directories at which volumes are mounted, it can contain a

pointer to the volume table.

 The system-wide open-file table contains a copy of the FCB of each open file, as well as

other information.

 The per-process open-file table contains a pointer to the appropriate entry in the system-

wide open-file table, as well as other information.

 Buffers hold file-system blocks when they are being read from disk or written to disk.

The below figure shows the FCB

 To create a new file, an application program calls the logical file system.

 The logical file system knows the format of the directory structures.

 To create a new file, it allocates a new FCB.

 The system then reads the appropriate directory into memory, updates it with the new file

name and FCB and writes it back to the disk.

Process of Opening a file

After a file has been created, it can be used for I/O.

156

lOMoAR cPSD|28634726

 To open a file we use a system call open(). The open() call passes a file name to the

logical file system.

 The open() system call first searches the system-wide open-file table to see if the file is

already in use by another process.

 If the file is open, a per-process open-file table entry is created pointing to the existing

system-wide open-file table.

 If the file is not already open, the directory structure is searched for the given file name.

 Once the file is found, the FCB is copied into a system-wide open-file table in memory.

 This table not only stores the FCB but also tracks the number of processes that have the

file open.

Process of Reading a File

 After an entry has been made in the per-process open-file table, with a pointer to the entry

in the system-wide open-file table and some other fields.

 These other fields may include a pointer to the current location in the file for the next

read() or write() operation and the access mode in which the file is open.

 The open() call returns a pointer to the appropriate entry in the per-process file-system

table. All file operations are then performed via this pointer.

 The file name may not be part of the open-file table, as the system has no use for it once

the appropriate FCB is located on disk.

 FCB could be cached to save time on subsequent opens of the same file. The name given

to the entry varies.

 UNIX refers to FCB as a File Descriptor. Windows refers to FCB as a File Handle.

Process of Closing the File

 When a process closes the file, the per-process table entry is removed and the system-

wide entry’s open count is decremented.

 When all users that have opened the file close it, any updated metadata is copied back to

the disk-based directory structure and the system-wide open-file table entry is removed.

Partitions and Mounting

 A disk can be sliced into multiple partitions. A partition can be raw or cooked partition.

 A partition which does not contain any file system is called raw partition.

157

lOMoAR cPSD|28634726

 A partition that contains a file system is called as cooked partition.

 UNIX swap space can use a raw partition, since it uses its own format on disk and does

not use a file system.

 Boot information can be stored in a separate partition.

 It has its own format, because at boot time the system does not have the file-system code

loaded and therefore cannot interpret the file-system format.

 Boot information is a sequential series of blocks, loaded as an image into memory.

 Execution of the image starts at a predefined location, such as the first byte.

 This boot loader knows about the file-system structure to be able to find and load the

kernel and start it executing.

 It can contain more than the instructions for how to boot a specific operating system.

 Many systems can be dual-booted, allowing us to install multiple operating systems on a

single system.

 A boot loader that understands multiple file systems and multiple operating systems can

occupy the boot space.

 Once loaded, it can boot one of the operating systems available on the disk.

 The disk can have multiple partitions, each containing a different type of file system and a

different operating system.

 Root partition contains the operating-system kernel. Sometimes other system files are

mounted at boot time.

 Other volumes can be automatically mounted at boot or manually mounted later,

depending on the operating system.

Example 1: Microsoft Windows System mounts each volume in a separate name space,

denoted by a letter and a colon.

 To record that a file system is mounted at F:, the operating system places a pointer to the

file system in a field of the device structure corresponding to F:.

 When a process specifies the driver letter, the operating system finds the appropriate file-

system pointer and traverses the directory structures on that device to find the specified

file or directory.

 Later versions of Windows can mount a file system at any point within the existing

directory structure.

Example 2: In UNIX based systems, file systems can be mounted at any directory.

 Mounting is implemented by setting a flag in the in-memory copy of the inode for that

directory.

 The flag indicates that the directory is a mount point. A field then points to an entry in the

mount table, indicating which device is mounted there.

 Mount table entry contains a pointer to the superblock of the file system on that device.

Virtual File Systems

The first layer is the file-system interface, based on the open(), read(), write() and close()

system calls and also based on file descriptors.

The second layer is called the virtual file system (VFS) layer. The VFS layer serves two

important functions:

158

lOMoAR cPSD|28634726

1. It separates file-system-generic operations from their implementation by defining a clean

VFS interface. Several implementations for the VFS interface may coexist on the same

machine, allowing transparent access to different types of file systems mounted locally.

2. It provides a mechanism for uniquely representing a file throughout a network. The VFS

is based on a file-representation structure called a vnode, that contains a numerical

designator for a network-wide unique file. This network-wide uniqueness is required for

support of network file systems. The kernel maintains one vnode structure for each active

node. A node may be a file or directory.

The VFS distinguishes local files from remote ones and local files are further distinguished

according to their file-system types.

 VFS activates file-system-specific operations to handle local requests according to their

file-system types and calls the Network File System (NFS) protocol procedures for

remote requests.

 File handles are constructed from the relevant vnodes and are passed as arguments to

these procedures.

The third layer implements the file-system type or the remote-file-system protocol.

DIRECTORY IMPLEMENTATION

1. Linear List

2. Hash Table

Linear List

 It maintains linear list of file names with pointers to the data blocks. It is time consuming.

 To create a new file, we must first search the directory to be sure that no existing file has

the same name. Then, we add a new entry at the end of the directory.

 To delete a file, we search the directory for the named file and then release the space

allocated to it.

 To reuse the directory entry either we can mark the entry as unused or we can attach it to

a list of free directory entries.

Disadvantage: It uses linear search to find a file. Linear search is very slow.

Hash Table

 The hash table takes a value computed from the file name and returns a pointer to the file

name in the linear list. It decreases the directory search time.

 Insertion and deletion are also very easy to implement.

159

lOMoAR cPSD|28634726

The major difficulty hash tables are its generally fixed size and Hash tables are dependent on

hash function on that size.

Example: Assume that we make a linear-probing hash table that holds 64 entries.

 The hash function converts file names into integers from 0 to 63.

 If we try to create a 65th file, we must enlarge the directory hash table to 128 entries.

 Hence we need a new hash function that must map file names to the range 0 to 127 and

must reorganize the existing directory entries to reflect their new hash-function values.

ALLOCATION METHODS

Three major methods of allocating disk space are in wide use:

1. Contiguous Allocation

2. Linked Allocation

3. Indexed Allocation

Contiguous Allocation

Contiguous allocation requires that each file occupy a set of contiguous blocks on the disk.

 Disk addresses define a linear ordering on the disk. With this ordering, assuming that only

one job is accessing the disk, accessing block b + 1 after block b normally requires no

head movement.

 When head movement is needed the head need only move from one track to the next.

 Contiguous allocation of a file is defined by the disk address and length (in block units) of

the first block.

 If the file is n blocks long and starts at location b, then it occupies blocks b, b + 1, b + 2,

..., b + n − 1.

 The directory entry for each file indicates the address of the starting block and the length

of the area allocated for this file.

Accessing a file that has been allocated contiguously is easy.

 For sequential access, the file system remembers the disk address of the last block

referenced and when necessary, reads the next block.

 For direct access to block i of a file that starts at block b, it can immediately access block

b+i.

 Both sequential and direct access can be supported by contiguous allocation.

Two-Problems with Contiguous Allocation:

1. Finding space for a new file

2. Determining how much space is needed for a file.

160

lOMoAR cPSD|28634726

Finding space for a new file

 The contiguous-allocation problem occurs in dynamic storage-allocation that involves

how to satisfy a request of size n from a list of free holes.

 First fit and best fit are the most common strategies used to select a free hole from the set

of available holes.

 Both, First fit and Best fit algorithms suffer from the problem of external fragmentation.

 As files are allocated and deleted, the free disk space is broken into little pieces.

 External fragmentation exists whenever free space is broken into chunks.

 It becomes a problem when the largest contiguous chunk is insufficient for a request.

 The storage is fragmented into a number of holes, none of which is large enough to store

the data.

One solution for this problem is Compaction:

 Compaction solves external fragmentation by coping an entire file system onto another

disk.

 The original disk is then freed completely, creating one large contiguous free space.

 We then copy the files back onto the original disk by allocating contiguous space from

this one large hole.

 The cost of compaction is very high when the size of the hard disk is huge. The time

taken for compaction will be high as the size of the hard disk increases.

Determining how much space is needed for a file

 When the file is created, the total amount of space it will need must be found and

allocated.

 If we allocate too little space to a file, we may find that the file cannot be extended.

 Especially with a best-fit allocation strategy, the space on both sides of the file may be in

use. Hence, we cannot make the file larger in place.

Two possibilities then exist.

 First, the user program can be terminated, with an appropriate error message.

 The user must then allocate more space and run the program again.

 These repeated runs may be costly.

 To prevent them, the user will normally overestimate the amount of space needed,

resulting in considerable wasted space.

 The other possibility is to find a larger hole, copy the contents of the file to the new space

and release the previous space.

 All these are time consuming and system performance will be effected.

Linked Allocation

Linked allocation solves all problems of contiguous allocation.

 With linked allocation, each file is a linked list of disk blocks.

 Disk blocks are scattered anywhere on the disk.

 The directory contains a pointer to the first and last blocks of the file.

Consider the below figure that shows linked list allocation:

161

lOMoAR cPSD|28634726

 A file of five blocks might start at block 9 and continue at block 16, then block 1, then

block 10 and finally block 25.

 Each block contains a pointer to the next block.

 These pointers are not made available to the user.

 Thus, if each block is 512 bytes in size and a disk address (the pointer) requires 4 bytes,

then the user sees blocks of 508 bytes.

Advantage:

Linked List allocation avoids Compaction

 To create a new file, we simply create a new entry in the directory.

 With linked allocation, each directory entry has a pointer to the first disk block of the file.

 This pointer is initialized to null (the end-of-list pointer value) to signify an empty file.

The size field is also set to 0.

 A write to the file causes the free-space management system to find a free block and this

new block is written to and is linked to the end of the file.

 To read a file, we simply read blocks by following the pointers from block to block.

 There is no external fragmentation with linked allocation and any free block on the free-

space list can be used to satisfy a request.

 The size of a file need not be declared when the file is created. A file can continue to

grow as long as free blocks are available. Hence by Linked List allocation avoids external

fragmentation and it avoid need for compact disk space.

Disadvantages:

1. It is inefficient for Direct Access

2. Space for Pointers

3. Reliability

Linked list allocation can be used effectively only for sequential-access files.

 To find the i
th

 block of a file, we must start at the beginning of that file and follow the

pointers until we get to the i
th

 block.

 Each access to a pointer requires a disk read and some require a disk seek.

 It is inefficient to support a direct-access capability for linked-allocation files.

Another disadvantage is the space required for the pointers.

 If a pointer requires 4 bytes out of a 512-byte block, then 0.78 percent of the disk is being

used for pointers, rather than for information.

 Each file requires slightly more space than it would otherwise.

162

lOMoAR cPSD|28634726

FILE ALLOCATION TABLE (FAT)

Linked List allocation uses File Allocation Table.

 FAT is very efficient method of disk-space allocation. It was used by the MS-DOS

operating system.

 A section of disk at the beginning of each volume contains the table.

 The table has one entry for each disk block and is indexed by block number.

 The directory entry contains the block number of the first block of the file.

 The table entry indexed by that block number contains the block number of the next block

in the file.

 This chain continues until it reaches the last block, which has a special end-of-file value

as the table entry.

 An unused block is indicated by a table value of 0. Allocating a new block to a file is to

find the first 0-valued table entry and replacing the previous end-of-file value with the

address of the new block. The 0 is then replaced with the end-of-file value.

 The FAT allocation scheme can result in a significant number of disk head seeks, unless

the FAT is cached.

 The disk head must move to the start of the volume to read the FAT and find the location

of the block in question, then move to the location of the block itself.

 A benefit is that random-access time is improved, because the disk head can find the

location of any block by reading the information in the FAT.

Solutions to above problems: Clustering

 Cluster is a collection multiple blocks and we allocate clusters rather than blocks.

 Let the file system define a cluster as four blocks and operate on the disk only in cluster

units. Pointers then use a much smaller percentage of the file’s disk space.

 This method improves disk throughput and decreases the space needed for block

allocation and free-list management.

 Clustering approach leads to the problem of internal fragmentation, because more space is

wasted when a cluster is partially full than when a block is partially full.

Reliability issues will be arised

 The files are linked together by pointers scattered all over the disk.

 If a pointer were lost or damaged, this might result in picking up the wrong pointer.

 This error could in turn result in linking into the free-space list or into another file.

163

lOMoAR cPSD|28634726

Indexed Allocation

In Indexed allocation, each file has its own index block. An index block is an array of disk-

block addresses.

 The i
th

 entry in the index block points to the i
th

 block of the file.

 The directory contains the address of the index block.

 To find and read the i
th

 block, we use the pointer in the i
th

 index-block entry.

 When the file is created, all pointers in the index block are set to null.

 When the i
th

 block is first written, a block is obtained from the free-space manager and its

address is put in the i
th

 index-block entry.

 Indexed allocation supports direct access, without suffering from external fragmentation,

because any free block on the disk can satisfy a request for more space.

Indexed allocation suffers from wasted space and Pointer Overhead.

 The pointer overhead of the index block is greater than the pointer overhead of linked

allocation.

 Consider we have a file of only one or two blocks.

 With linked allocation, we lose the space of only one pointer per block.

 With indexed allocation, an entire index block must be allocated, even if only one or two

pointers will be non-null.

Determining size of the index block is a big issue in Indexed allocation. Several mechanisms

are used for this purpose are:

1. Linked Scheme

2. Multilevel Index

3. Combined Scheme

Linked Scheme

 An index block is normally one disk block. Thus, it can be read and written directly by

itself.

 To allow for large files, we can link together several index blocks.

 Example: An index block might contain a small header giving the name of the file and a

set of the first 100 disk-block addresses.

 The next address (i.e.) the last word in the index block is null (for a small file) or is a

pointer to another index block (for a large file).

164

lOMoAR cPSD|28634726

Multilevel index

 A variant of linked representation uses a first-level index block to point to a set of second-

level index blocks, which in turn point to the file blocks.

 To access a block, the operating system uses the first-level index to find a second-level

index block and then uses that block to find the desired data block.

 This approach could be continued to a third or fourth level, depending on the desired

maximum file size.

 With 4,096-byte blocks, we could store 1,024 four-byte pointers in an index block.

 Two levels of indexes allow 1,048,576 data blocks and a file size of up to 4 GB.

Combined Scheme

 It is used by the UNIX based file system that keeps the first 15 pointers of the index block

in the file’s inode.

 The first 12 of these pointers point to direct blocks (i.e.) they contain addresses of blocks

that contain data of the file.

 Thus, the data for small files of no more than 12 blocks do not need a separate index

block.

 If the block size is 4 KB, then up to 48 KB of data can be accessed directly.

 The next three pointers point to Indirect blocks.

 The first points to a Single indirect block, which is an index block containing not data

but the addresses of blocks that do contain data.

 The second points to a Double indirect block, which contains the address of a block that

contains the addresses of blocks that contain pointers to the actual data blocks.

 The last pointer contains the address of a Triple indirect block.

FREE-SPACE MANAGEMENT

 Since disk space is limited, we need to reuse the space from deleted files for new files.

 To keep track of free disk space, the system maintains a Free-Space List.

 Free-space list records all free disk blocks, those not allocated to some file or directory.

 To create a file, we search the free-space list for the required amount of space and

allocate that space to the new file. This space is then removed from the free-space list.

 When a file is deleted, its disk space is added to the free-space list.

165

lOMoAR cPSD|28634726

The free space can be managed in several ways:

1. Bit Vector

2. Linked List

3. Grouping

4. Counting

5. Space Maps

Bit Vector

The free-space list is implemented as a Bit map or Bit vector.

Each block is represented by one bit, the bit 1 represents block is free and bit 0 represents

block is allocated.

Example: Consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 17, 18, 25, 26 and 27

are free and the rest of the blocks are allocated. The free-space bit map would be

001111001111110001100000011100000

Advantage: Its relative simplicity and its efficiency in finding the first free block or n

consecutive free blocks on the disk.

Disadvantage: Bit Vectors are kept in main memory is possible for smaller disks. For larger

disks it is not efficient to keep it in Main memory because A 1-TB disk with 4-KB blocks

requires 256 MB to store its bit map. So, as the disk size increases, the bit vector size is also

increases.

Linked List

All the free disk blocks are linked together by keeping a pointer to the first free block in a

special location on the disk and caching it in memory. This first block contains a pointer to

the next free disk block and so on.

 Consider the above figure, that shows the set of free blocks 2, 3, 4, 5, 8, 9, 10, 11, 12, 13,

17, 18, 25, 26 and 27.

 The system would keep a pointer to block 2 as the first free block. Block 2 would contain

a pointer to block 3 and so on.

 This scheme is not efficient; to traverse the list, we must read each block, which requires

substantial I/O time.

Grouping

 It stores the addresses of n free blocks in the first free block.

 The first n−1 of these blocks are free blocks and the last block contains the addresses of

another n free blocks and so on.

 Addresses of a large number of free blocks can be found quickly than linked-list method.

166

lOMoAR cPSD|28634726

Counting

 When space is allocated with the contiguous-allocation algorithm or through clustering,

several contiguous blocks may be allocated or freed simultaneously.

 Here we keep the address of the first free block and the number (n) of free contiguous

blocks that follow the first block.

 Each entry in the free-space list then consists of a disk address and a count. Hence the

overall disk entries are small.

Space Maps

Oracle’s ZFS file system was designed to encompass huge numbers of files, directories and

even file systems.

 In its management of free space, ZFS uses a combination of techniques to control the size

of data structures and minimize the I/O needed to manage those structures.

 ZFS creates meta-slabs to divide the space on the device into chunks of manageable size.

 A volume contains hundreds of meta-slabs. Each meta-slab has an associated space map.

 ZFS uses the counting algorithm to store information about free blocks. It uses log-

structured file-system techniques to record them.

 The space map is a log of all block activity such as allocating and freeing, in time order

and in counting format.

 When ZFS decides to allocate or free space from a meta-slab, it loads the associated space

map into memory in a balanced-tree structure (for very efficient operation), indexed by

offset and replays the log into that structure.

 The in-memory space map is then an accurate representation of the allocated and free

space in the meta-slab.

 ZFS also condenses the map as much as possible by combining contiguous free blocks

into a single entry.

 Finally, the free-space list is updated on disk as part of the transaction-oriented operations

of ZFS.

 During the collection and sorting phase, block requests can still occur and ZFS satisfies

these requests from the log. In essence, the log plus the balanced tree is the free list

167

lOMoAR cPSD|28634726

UNIT-5

MASS-STORAGE STRUCTURE

MAGNETIC DISK

Magnetic disks provide the bulk of secondary storage for modern computer systems.

 Each disk platter has a flat circular shape, like a CD.

 Common platter diameters range from 1.8 to 3.5 inches.

 The two surfaces of a platter are covered with a magnetic material.

 We store information by recording it magnetically on the platters.

 A read–write head ―flies‖ just above each surface of every platter.

 The heads are attached to a Disk arm that moves all the heads as a unit.

 The surface of a platter is logically divided into circular Tracks.

 The tracks are subdivided into Sectors. Each track may contain hundreds of sectors.

 The set of tracks that are at one arm position makes up a Cylinder.

 There may be thousands of concentric cylinders in a disk drive.

 The storage capacity of common disk drives is measured in Giga-bytes.

 When the disk is in use, a drive motor spins it at high speed. Common drives spin at

5,400, 7,200, 10,000 and 15,000 RPM.

Transfer rate is the rate at which data flow between the drive and the computer.

The Positioning time or Random-access time consists of two parts:

 Seek time: It is the time necessary to move the disk arm to the desired cylinder.

 Rotational Latency: It is the time necessary for the desired sector to rotate to the disk

head.

Typical disks can transfer several megabytes of data per second and they have seek times and

rotational latencies of several milliseconds.

Head crash

The disk head flies on an extremely thin cushion of air, there is a danger that the head will

make contact with the disk surface and damage the magnetic surface is called Head Crash.

A head crash cannot be repaired. The entire disk must be replaced.

168

lOMoAR cPSD|28634726

Removable Disks

 A disk can be removable, allowing different disks to be mounted as needed.

 Removable magnetic disks consist of one platter, held in a plastic case to prevent damage

while not in the disk drive.

 Other forms of removable disks include CDs, DVDs and Blu-ray discs removable flash-

memory devices known as flash drives.

A disk drive is attached to a computer by a set of wires called an I/O bus. Several kinds of

buses are available, including advanced technology attachment (ATA), serial ATA

(SATA), eSATA, universal serial bus (USB) and fibre channel (FC).

SOLID-STATE DISKS (SSD)

 SSD is nonvolatile memory that is used like a hard drive.

 SSDs are more reliable because they have no moving parts.

 SSDs are faster because they have no seek time or latency.

 SSDs can be much faster than magnetic disk drives.

 By comparing Hard disk, SSDs consumes less power but SSDs are more expensive per

megabyte, have less capacity and may have shorter life spans than hard disks.

MAGNETIC TAPES

 Magnetic tape was used as an early secondary-storage medium.

 Tapes relatively permanent and can hold large quantities of data.

 Magnetic Tape access time is slow compared with that of main memory and magnetic

disk. Random access to magnetic tape is about a thousand times slower than random

access to magnetic disk, so tapes are not very useful for secondary storage.

 Tapes are used mainly for backup, for storage of infrequently used information and as a

medium for transferring information from one system to another system.

 A tape is kept in a spool and it is wound or rewound past a read–write head.

 Moving to the correct spot on a tape can take minutes, but once positioned, tape drives

can write data at speeds comparable to disk drives.

 Tape capacity is up to several terabytes.

DISK STRUCTURE

Magnetic disk drives are addressed as large one-dimensional arrays of logical blocks.

 The Logical block is the smallest unit of transfer.

 Size of the Logical block is 512 Bytes or 1024 Bytes.

 The one-dimensional array of logical blocks is mapped onto the sectors of the disk

sequentially. Sector 0 is the first sector of the first track on the outermost cylinder.

 The mapping proceeds in order through that track, then through the rest of the tracks in

that cylinder and then through the rest of the cylinders from outermost to innermost.

 By using this mapping, we can—at least in theory—convert a logical block number into

an old-style disk address that consists of a cylinder number, a track number within that

cylinder and a sector number within that track.

The number of sectors per track is not a constant on some drives.

169

lOMoAR cPSD|28634726

 The track which is far from the center of the disk, the length of the track is more and this

track can hold more sector than the track that is nearer to the center of disk,

 Tracks in the outermost zone typically hold 40 percent more sectors than do tracks in the

innermost zone.

 The drive increases its rotation speed as the head moves from the outer to the inner tracks

to keep the same rate of data moving under the head.

 This method is used in CD-ROM and DVD-ROM drives.

DISK SCHEDULING ALGORITHMS

One of the responsibilities of the operating system is to use the hardware efficiently.

The disk bandwidth is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of the last transfer.

Different Disk Scheduling algorithms are:

1. FCFS Scheduling

2. SSTF Scheduling

3. SCAN Scheduling

4. C- SCAN Scheduling

5. LOOK Scheduling

First-Come-First-Serve Algorithm

FCFS does not provide the fastest service.

Consider a disk queue with requests for I/O to blocks on cylinders in the order:

98, 183, 37, 122, 14, 124, 65, 67

The disk head is initially at cylinder 53. By using FCFS algorithm:

 It will first move from 53 to 98 the head movement of 45 cylinders

 Then 98 to 183 the head movement of 85 cylinders

 Then 183 to 37 the head movement of 146 cylinders

 Then 37 to 122 the head movement of 85 cylinders

 Then 122 to 14 the head movement of 108 cylinders

 Then 14 to 124 the head movement of 110 cylinders

 Then 124 to 65 the head movement of 59 cylinders

 Then 65 to 67 the head movement of 2 cylinders

 The total head movement of 640 cylinders.

FCFS algorithm reduces the system performance.

SSTF Scheduling

Shortest-Seek-Time-First (SSTF) algorithm service all the requests close to the current

head position before moving the head far away to service other requests.

170

lOMoAR cPSD|28634726

The SSTF algorithm selects the request with the least seek time from the current head

position. (i.e.) SSTF chooses the pending request closest to the current head position.

Consider a disk queue with requests for I/O to blocks on cylinders in the order:

98, 183, 37, 122, 14, 124, 65, 67

The disk head is initially at cylinder 53.

Closest request to the initial head position 53 is at cylinder 65 takes 12 cylinders movements.

 Once we are at cylinder 65, the next closest request is at cylinder 67 (2 moves).

 From 67, the request at cylinder 37 is closer than the one at 98, so 37 is served next.

 Similarly we service the request at cylinder 14, then 98, 122, 124 and finally 183.

 This scheduling method results in a total head movement of only 236 cylinders.

The performance of SSTF is better than FCFS but SSTF causes starvation of some requests.

 Suppose that we have two requests in the queue, for cylinders 14 and 186 and while the

request from 14 is being serviced, a new request 30 near 14 arrives.

 This new request 30 will be serviced next, making the request at 186 wait.

 While request 30 is being serviced, another request close to 30 could arrive.

 A continual stream of requests near one another could cause the request for cylinder 186

to wait indefinitely.

SCAN algorithm

In the SCAN algorithm, the disk arm starts at one end of the disk and moves toward the

other end, servicing requests as it reaches each cylinder, until it gets to the other end of the

disk. At the other end, the direction of head movement is reversed and servicing continues.

The head continuously scans back and forth across the disk. The SCAN algorithm is also

called as the Elevator algorithm, since the disk arm behaves just like an elevator in a

building, first servicing all the requests going up and then reversing to service requests the

other way.

Consider a disk queue with requests for I/O to blocks on cylinders in the order:

98, 183, 37, 122, 14, 124, 65, 67

The disk head is initially at cylinder 53.

171

lOMoAR cPSD|28634726

Before applying SCAN algorithm we need to know the the direction of head movement in

addition to the head’s current position.

 Assuming that the disk arm is moving toward 0 and that the initial head position is again

53 the head will next service 37 and then 14.

 At cylinder 0, the arm will reverse and will move toward the other end of the disk,

servicing the requests at 65, 67, 98, 122, 124 and 183.

 A request arrives in the queue in front of the head, it will be serviced almost immediately.

 A request arriving just behind the head will have to wait until the arm moves to the end of

the disk, reverses direction and comes back.

C-SCAN Scheduling

Circular SCAN (C-SCAN) scheduling is a variant of SCAN designed to provide a more

uniform wait time.

Like SCAN, C-SCAN moves the head from one end of the disk to the other, servicing

requests along the way.

When the head reaches the other end, it immediately returns to the beginning of the disk

without servicing any requests on the return trip.

The C-SCAN scheduling algorithm essentially treats the cylinders as a circular list that wraps

around from the final cylinder to the first one.

Consider a disk queue with requests for I/O to blocks on cylinders in the order:

98, 183, 37, 122, 14, 124, 65, 67

The disk head is initially at cylinder 53.

LOOK Scheduling

 Both SCAN and C-SCAN move the disk arm across the full width of the disk, neither of

these algorithms are implemented.

 In LOOK and C-LOOK scheduling, the arm goes only as far as the final request in each

direction. Then, it reverses direction immediately, without going all the way to the end of

the disk. (i.e.) they look for a request before continuing to move in a given direction.

172

lOMoAR cPSD|28634726

DISK MANAGEMENT

The operating system is responsible for several other aspects of disk management such as:

1. Disk Formatting

2. Boot Block

3. Bad Blocks

Disk Formatting

A new magnetic disk is an empty disk. Before a disk can store data, it must be divided into

sectors that the disk controller can read and write. This process is called Low-Level

Formatting or Physical Formatting.

 Low-level formatting fills the disk with a special data structure for each sector.

 The data structure for a sector consists of a header, a data area and a trailer. The data are

is of 512 bytes.

 The header and trailer contain information used by the disk controller, such as a sector

number and an error-correcting code (ECC).

 When the controller writes a sector of data during normal I/O, the ECC is updated with a

value calculated from all the bytes in the data area.

 When the sector is read, the ECC is recalculated and compared with the stored value.

 If the stored and calculated numbers are different, this mismatch indicates that the data

area of the sector has become corrupted and that the disk sector may be bad.

 The ECC is an error-correcting code because it contains the information of how many bits

of data have been corrupted and identifies the corrupted bits and corrects the bits.

Before operating system can use a disk to hold files, the operating system still needs to record

its own data structures on the disk. This will be done in two steps:

1. A disk is to be partition into one or more groups of cylinders. The operating system can

treat each partition as a separate disk. Example: One partition can hold a copy of the

operating system’s executable code, while another partition holds user files.

2. Logical Formatting: It means creation of a file system. the operating system stores the

initial file-system data structures onto the disk. These data structures may include maps of

free and allocated space and an initial empty directory.

Raw Disk is a partition that does not contain any file system. An I/O operation done on this

raw disk is termed as Raw I/O.

Note: To increase efficiency, most file systems group blocks together into larger chunks,

frequently called clusters. Disk I/O is done via blocks, but file system I/O is done via

clusters.

Boot Block

 When a computer is powered up or rebooted an initial program called bootstrap program

will run. The bootstrap program initializes all aspects of the system, from CPU registers

to device controllers and the contents of main memory and then starts the operating

system.

 To start the operating system, the bootstrap program finds the operating-system kernel on

disk, loads that kernel into memory and jumps to an initial address to begin the operating-

system execution.

173

lOMoAR cPSD|28634726

 The bootstrap is stored in read-only memory (ROM), because ROM needs no

initialization and it is at a fixed location that the processor can start executing when

powered up or reset. Since ROM is read only, it cannot be infected by a computer virus.

Problem: Changing this bootstrap code requires changing the ROM hardware chips.

Solution: Most systems store a tiny bootstrap loader program in the boot ROM whose only

job is to bring in a full bootstrap program from disk.

 The full bootstrap program can be changed easily: a new version is simply written onto

the disk.

 The full bootstrap program is stored in the ―boot blocks‖ at a fixed location on the disk. A

disk that has a boot partition is called a boot disk or system disk.

 The code in the boot ROM instructs the disk controller to read the boot blocks into

memory (no device drivers are loaded at this point) and then starts executing that code.

Booting in Windows Operating system

Windows allows a hard disk to be divided into partitions and one partition identified as the

boot partition.

 The boot partition contains the operating system and device drivers.

 The Windows system places its boot code in the first sector on the hard disk called the

Master Boot Record (MBR).

 Booting begins by running code that is resident in the system’s ROM memory. This code

directs the system to read the boot code from the MBR.

 The MBR also contains a table listing the partitions for the hard disk and a flag indicating

which partition the system is to be booted from.

 Once the system identifies the boot partition, it reads the boot sector from that partition

and continues with the remainder of the boot process, which includes loading the various

subsystems and system services.

Bad Blocks

The disks are prone to failure. If the disk is completely failed then the disk is to be replaced

and contents are restored from backup media to the new disk.

If the failure is partial (i.e.) one or more sectors become defective, These sectors are called

Bad Blocks.

Depending on the disk and controller in use, these blocks are handled in a variety of ways:

 While the disk is being formatted, the disk can be scanned to find the bad blocks.

 Any bad blocks that are discovered are flagged as unusable so that the file system does

not allocate them.

174

lOMoAR cPSD|28634726

 If blocks go bad during normal operation, a special program must be run manually to

search for the bad blocks and to lock them away.

 Data that resided on the bad blocks usually are lost.

Bad Block Recovery

 The controller maintains a list of bad blocks on the disk.

 This Bad Block list is initialized during the low-level formatting at the factory and this

list is updated over the life of the disk.

 Low-level formatting also sets aside spare sectors not visible to the operating system.

 The controller can be told to replace each bad sector logically with one of the spare

sectors. This scheme is known as Sector Sparing or Forwarding.

 Most disks are formatted to provide a few spare sectors in each cylinder and a spare

cylinder.

 When a bad block is remapped, the controller uses a spare sector from the same cylinder.

SWAP-SPACE MANAGEMENT

Swap-Space Management is another low-level task of the operating system.

 Virtual memory uses disk space as an extension of main memory by using swap space.

 Since disk swap space access is much slower than main memory access the system

performance decreases.

 The main goal for the design and implementation of swap space is to provide the best

throughput for the virtual memory system.

Swap-Space Use

 Swap space is used in various ways by different operating systems, depending on the

memory-management algorithms in use.

 Systems that implement swapping may use swap space to hold an entire process image,

including the code and data segments.

 Systems that support Paging may simply store pages that have been pushed out of main

memory.

 The amount of swap space needed on a system can therefore vary from a few megabytes

of disk space to gigabytes, depending on the amount of physical memory, the amount of

virtual memory it is using for back-up and the way in which the virtual memory is used.

Example: Older Linux systems has suggested setting swap space to double the amount of

physical memory but the modern Linux systems use considerably less swap space.

Note: Some operating systems including Linux allow the use of multiple swap spaces,

including both files and dedicated swap partitions.

Swap-Space Location

A swap space can reside in one of two places:

1. It can be carved out of the normal file system.

2. It can be in a separate disk partition.

 Swap-space can be created in a separate Raw Partition.

 No file system or directory structure is placed in this space instead a separate swap-space

storage manager is used to allocate and deallocate the blocks from the raw partition.

175

lOMoAR cPSD|28634726

 Swap space manager uses algorithms optimized for speed rather than for storage

efficiency, because swap space is accessed much more frequently than file systems when

it is used.

 The raw-partition approach creates a fixed amount of swap space during disk partitioning.

 Adding more swap space requires either repartitioning the disk or adding another swap

space elsewhere.

REDUNDANT ARRAYS OF INDEPENDENT DISKS (RAID) STRUCTURE

 Disk drives have continued to get smaller and cheaper, so it is now economically feasible

to attach many disks to a computer system.

 Having a large number of disks in a system and if they are operated in parallel we can

improve the rate at which data can be read or written.

 This setup offers the potential for improving the reliability of data storage, because

redundant information can be stored on multiple disks. Thus, failure of one disk does not

lead to loss of data.

 This disk-organization techniques is called as Redundant Arrays Of Independent Disks

(RAID).

 RAIDs are used for Higher reliability and Higher data-transfer rates.

RAID Levels

RAIDs can be implemented in different levels:

1. RAID 0: Non-Redundant Striping

2. RAID 1: Mirrored Disks.

3. RAID 2: Memory-Style Error-Correcting Codes.

4. RAID 3: Bit-Interleaved Parity.

5. RAID 4: Block-Interleaved Parity.

6. RAID 5: Block-Interleaved Distributed Parity

7. RAID 6: P+Q redundancy

8. RAID 0 + 1 and 1 + 0

RAID 0: Non-Redundant Striping

RAID level 0 refers to disk arrays with striping at the level of blocks but without any

redundancy. (i.e.) some part of the data is stored in one disk other part of the data is stored in

other disks without duplicating the data.

RAID level 1: Disk Mirroring

The entire data in the disk is copied in to other disks. (i.e.) the data that is stored in one disk

the same data will be copied in other disk. If one disk fails we can recover the data from its

copied disk called as Backup disk.

Note: Mirroring provides high reliability, but it is expensive. Striping provides high data-

transfer rates, but it does not improve reliability.

176

lOMoAR cPSD|28634726

RAID level 2. Memory-Style Error-Correctingcode (ECC) Organization

 It uses parity bits to detect errors. Each byte in a memory system may have a parity bit

associated with it that records whether the number of bits in the byte set to 1 is even

(parity = 0) or odd (parity = 1).

 If one of the bits in the byte is damaged (i.e.) either a 1 becomes a 0 or a 0 becomes a 1,

the parity of the byte changes and thus does not match the stored parity.

 Similarly, if the stored parity bit is damaged, it does not match the computed parity.

 Thus, all single-bit errors are detected by the memory system.

ECC can be used directly in disk arrays via striping of bytes across disks.

Example: The first bit of each byte can be stored in disk 1, the second bit in disk 2 and so on

until the eighth bit is stored in disk 8; the error-correction bits are stored in further disks.

If one of the disks fails, the remaining bits of the byte and the associated error-correction bits

can be read from other disks and used to reconstruct the damaged data.

RAID level 2 requires only three disks whereas RAID1 requires four disks.

RAID level 3: Bit-Interleaved Parity

 Here, the disk controllers can detect whether a sector has been read correctly, so a single

parity bit can be used for error correction as well as for detection.

 If one of the sectors is damaged, we know exactly which sector it is and we can figure out

whether any bit in the sector is a 1 or a 0 by computing the parity of the corresponding

bits from sectors in the other disks.

 If the parity of the remaining bits is equal to the stored parity, the missing bit is 0;

otherwise, it is 1.

 RAID level 3 is less expensive than RAID2, it requires only one extra disk.

RAID level 4: Block-Interleaved Parity Organization

It Uses block-level striping and keeps a parity block on a separate disk for corresponding

blocks from N other disks.

If one of the disks fails, the parity block can be used with the corresponding blocks from the

other disks to restore the blocks of the failed disk.

RAID level 5: Block-Interleaved Distributed Parity

It differs from level 4 in that it spreads data and parity among all N+ 1 disks, rather than

storing data in N disks and parity in one disk. For each block, one of the disks stores the

parity and the others store data.

Ex: With an array of five disks, the parity for the nth block is stored in disk (n mod 5)+1.

 The nth blocks of the other four disks store actual data for that block.

177

lOMoAR cPSD|28634726

 A parity block cannot store parity for blocks in the same disk, because a disk failure

would result in loss of data as well as of parity and the loss would not be recoverable.

 By spreading the parity across all the disks in the set, RAID 5 avoids potential overuse of

a single parity disk, which can occur with RAID 4.

 RAID 5 is the most common parity RAID system.

RAID level 6: P + Q redundancy scheme

 It is like RAID level 5 but stores extra redundant information to guard against multiple

disk failures.

 Instead of parity, error-correcting codes such as the Reed–Solomon codes are used.

 2 bits of redundant data are stored for every 4 bits of data compared with 1 parity bit in

level 5 and the system can tolerate two disk failures.

RAID levels 0 + 1 and 1 + 0

 RAID level 0 + 1 refers to a combination of RAID levels 0 and 1.

 RAID 0 provides the performance, while RAID 1 provides the reliability.

 In RAID 0 + 1, a set of disks are striped and then the stripe is mirrored to another,

equivalent stripe.

 RAID level 1 + 0, in which disks are mirrored in pairs and then the resulting mirrored

pairs are striped.

 If a single disk fails in RAID 0 + 1, an entire stripe is inaccessible, leaving only the other

stripe.

 With a failure in RAID 1 + 0, a single disk is unavailable, but the disk that mirrors it is

still available, as are all the rest of the disk.

DISK ATTACHMENT

Computers access disk storage in two ways.

1. Host-Attached Storage (HAS)

2. Network-Attached Storage (NAS)

178

lOMoAR cPSD|28634726

Host-Attached Storage

 Host-attached storage is storage accessed through local I/O ports.

 The typical desktop PC uses an I/O bus architecture called IDE or ATA or SATA.

 This architecture supports a maximum of two drives per I/O bus.

 Hard disk drives, RAID arrays and CD, DVD and tape drives are storage devices that are

suitable for use as Host-Attached Storage.

 The I/O commands that initiate data transfers to a host-attached storage device are reads

and writes of logical data blocks directed to specifically identified storage units.

Network-Attached Storage

 A network-attached storage (NAS) device is a special-purpose storage system that is

accessed remotely over a data network.

 Clients access network-attached storage via a remote-procedure-call interface such as

NFS for UNIX systems or CIFS for Windows machines.

 The remote procedure calls (RPCs) are carried via TCP or UDP over an IP network

usually the same local-area network (LAN) that carries all data traffic to the clients.

 Network-attached storage provides a convenient way for all the computers on a LAN to

share a pool of storage with the same ease of naming and access enjoyed with local host-

attached storage.

Storage-Area Network

A storage-area network (SAN) is a private network connecting servers and storage units.

 Multiple hosts and multiple storage arrays can attach to the same SAN and storage can be

dynamically allocated to hosts.

 A SAN switch allows or prohibits access between the hosts and the storage.

 Example: If a host is running low on disk space, the SAN can be configured to allocate

more storage to that host.

 SANs make it possible for clusters of servers to share the same storage and for storage

arrays to include multiple direct host connections.

179

